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ABSTRACT
Adversaries in cryptography have traditionally been modeled as

either semi-honest or malicious. Over the years, however, several

works have investigated the design of cryptographic protocols

against rational adversaries. The most well-known example are

covert adversaries in secure computation (Aumann & Lindell, TCC
’07 ) which are adversaries that wish to deviate from the protocol

but without being detected. Protocols secure against such covert

adversaries guarantee that deviations are detected with probability

at least Y which is known as the deterrence factor.

In this work, we initiate the study of contracts in cryptographic

protocol design. We show how to design, use and analyze contracts

between parties for the purpose of incentivizing honest behavior

from rational adversaries. We refer to such contracts as adversarial

level agreements (ALA). The framework we propose can result

in more efficient protocols and can enforce deterrence in covert

protocols; meaning that one can guarantee that a given deterrence

factor will deter the adversary instead of assuming it.

We show how to apply our framework to two-party protocols,

including secure two-party computation (2PC) and proofs of storage

(PoS). In the 2PC case, we integrate ALAs to publicly-verifiable

covert protocols and show, through a game-theoretic analysis, how

to set the parameters of the ALA to guarantee honest behavior. We

do the same for PoS which are two-party protocols that allow a

client to efficiently verify the integrity of a file stored in the cloud.
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1 INTRODUCTION
Adversaries in cryptographic protocols have traditionally beenmod-

eled as either semi-honest or malicious. Semi-honest adversaries

are assumed to follow the protocol while trying to learn as much

as possible whereas malicious adversaries can behave arbitrarily.

In 2004, Halpern and Teague first considered adversaries that were

rational in the sense that their behavior was governed by some

utility function they sought to maximize [17]. While Halpern and

Teague focused on proving and circumventing impossibility results

in secret sharing and secure multi-party computation (MPC), follow-

up work [10, 16] has shown that protocols secure against rational

adversaries can be more efficient than protocols secure against ma-

licious adversaries. The most well-known example is the work of

Aumann and Lindell, which showed how to construct two-party

computation (2PC) protocols secure against covert adversaries [8].

Covert adversaries. An adversary is covert if it deviates from the

protocol but wishes to do so without being detected. A protocol

secure against such an adversary guarantees that if the adversary is

able to cheat then it will be detected with high enough probability.

The covert model seems to capture many real-world adversaries,

for example companies that cannot afford to be caught cheating

because they have a reputation to protect. But to use a covert

protocol in practice, one needs to set its deterrence factor which

is a lower bound on the probability that cheating is detected. The

idea is that if the adversary’s utility function decreases when it gets

caught and if the deterrence factor is set appropriately, then it is

rational for a covert adversary to behave honestly.

In this work, we propose a new way to design cryptographic

protocols against covert adversaries. Instead of focusing on deter-

rence, we focus on punishment. That is, our approach is to design

protocols that explicitly punish adversaries when they cheat. It

is well known in game theory that, when applied appropriately,

punishment can lead to good outcomes. We will show this is the

case in the setting of cryptographic protocols as well.

Contracts. In our framework, we integrate punishment into cryp-

tographic protocols through contracts. Contracts are not a standard
cryptographic primitive but they are powerful against rational

adversaries. Furthermore, contracts are easy to design and well-

understood by individuals and institutions. Many companies, in-

cluding cloud providers, telecommunication companies and ISPs

routinely use contracts called service level agreements (SLA) to guar-
antee a certain level of performance to their customers. In our

setting, we use contracts to guarantee a certain level of “adversari-

alness” so we refer to them as adversarial level agreements (ALA).
An ALA is a contract that specifies the damages a party has to pay

if it is caught cheating.
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Optimistic enforcement. One of the challenges in using contracts

is that they require an enforcement mechanism. For our purposes,

we assume the existence of a third party called the judge, that

can enforce the damages stipulated in the ALAs. Of course, this

requires our protocols to be auditable/verifiable by the judge. We

stress, however, that our framework does not require the judge to

be online except if there is a dispute, and as such our enforcement

mechanism is optimistic. Since the judge is only required when a

dispute occurs, this role could be played by either the existing legal

system, or an appropriate smart contract, or another trusted entity

depending on the application setting.

Advantages. The use of ALAs in cryptographic protocols pro-

vides several advantages. The first is to “enforce deterrence” in the

covert model. In covert protocols, it is assumed that a high deter-

rence factor will prevent dishonest behavior but, in practice, there

is no reason to believe this is true. For example, when faced with a

rational garbler, we can set the deterrence factor of the two-party

protocol to some value but we have no way of knowing if it is high

enough to incentivize the garbler to behave honestly. Using ALAs,

however, allows us to integrate punishment which can be used to

incentivize honest behavior at a given deterrence level.

The second advantage is in improving efficiency against covert

adversaries in a “cost-free” manner. Cryptographic protocols secure

against deviating adversaries (i.e., either covert or malicious) have

to guarantee some form of soundness error which bounds the prob-

ability that the adversary can cheat successfully. Interestingly, we

will see that enhancing a protocol with an ALA creates a tradeoff

between the damages in the ALA and the soundness error of the

protocol: the higher we make the damages the higher the soundness

error we can tolerate. Higher soundness error, in turn, implies a

smaller security parameter which implies increased efficiency. This

efficiency vs. damages tradeoff is particularly interesting because

increasing damages is “free” in the sense that it does not impose any

financial or computational costs on either party (unless cheating oc-

curs). In other words, by using ALAs we can increase the efficiency

of a protocol by decreasing its security parameter and increasing

the damages but, for the most part, this increase in damages does

not cost the parties anything.

Application to two-party protocols. In this work we explore how

ALAs can be integrated into cryptographic protocols. We focus on

two-party protocols and, specifically, the cases of 2PC and proofs of

storage (PoS). We stress that the goal of this work is to initiate and

motivate the use of contracts/ALAs in protocol design. The specific

applications to 2PC and PoS are to illustrate how our framework can

be applied to non-trivial cryptographic protocols and to motivate

further study of ALAs.

In the setting of 2PC,wewill be particularly interested in publicly-

verifiable covert (PVC) protocols whichwere introduced by Asharov

and Orlandi [5]. These protocols enhance covert protocols by pro-

viding honest parties with evidence of cheating that can be publicly

verified. PoS, which were introduced by Juels and Kaliski [19] and

by Ateniese et al. [6], are two-party protocols that allow a client

to efficiently verify the integrity of a file stored at a remote server.

Roughly, the client encodes its file before outsourcing it to the

server. From that point on, it can verify the integrity of the file by

sending a constant-size challenge to the server. The server then uses

the challenge and the file to compute a constant-size proof which

it returns to the client. If the proof verifies, the client is convinced

the server is storing the file.

1.1 Our Contributions
In this work, we introduce the notion of ALAs and show how to

integrate them into the design of two-party cryptographic proto-

cols; including secure two-party computation and proof of storage

(PoS) protocols. We show that ALA-enhanced protocols are not only

more efficient than standard protocols but that they also exhibit a

“cost-free” tradeoff. Our work describes a new paradigm in cryp-

tographic protocol design. More precisely, we make the following

contributions.

Cryptographic inspection games. The introduction of contracts

and punishment into cryptographic protocols results in new strate-

gic interactions between the parties. We formalize these interac-

tions as cryptographic inspection games (CIG) which are strategic

games played between an inspector and an inspectee which cor-

respond to the verifier/evaluator and prover/garbler, respectively.

CIGs are a variant of inspection games which were introduced in

the 1960s in the context of nuclear disarmament (we refer to [9]

for an overview). In an inspection game the inspector’s goal is to

detect deviation from some “good” behavior while the inspectee’s

goals are to deviate without being detected.

One difference between CIGs and traditional inspection games

is that, for CIGs, we also consider cases where the inspector is

dishonest. This can occur in ALA-enhanced protocols because ALAs

introduce an incentive for one of the parties to “frame” the other to

recover the damages. To address this, we use a dual ALA which is

a second contract; this time between the “inspector” party and a

judge that, if required, can “inspect the inspector” to ensure honest

behavior. In this manner, we find a desirable equilibrium for our

CIGs where the parties behave honestly.

Secure two-party computation. We show how to integrate ALAs

into 2PC protocols in order to get efficiency improvements against

rational adversaries. More precisely, we augment PVC protocols [5]

which guarantee accountability (i.e., deviations from the protocol

can be publicly-verified) and defamation-freeness (i.e., no party

can generate evidence that an honest party deviated) by having

the garbler and evaluator first agree to an ALA that stipulates

damages if the garbler deviates. At high level, the ALA induces

a CIG where the evaluator is the inspector and the garbler is the

inspectee. We analyze this game and, based on the accountability

of the underlying protocol, find conditions under which the ALA

guarantees honest behavior from the garbler. However, this result

assumes an honest evaluator/inspector. We address this by adding

a dual ALA between the inspector/evaluator and the judge that

stipulates the damages the former must pay (to the judge) if it

attempts to frame the inspectee/garbler. The introduction of the

dual ALA gives rise to a more complex CIG whose analysis, in part,

relies on the defamation-freeness of the PVC protocol.

Proofs of storage. To add ALAs to a PoS we must first ensure that

it is auditable by a judge. Towards this, we introduce and formalize

the notion of an auditable PoS (APoS) which is a PoS that includes

an audit algorithm that a judge can use to determine if the server



has the file or not. From a security perspective, an APoS has to

satisfy the same soundness requirement as a PoS (i.e., if the proof

verifies the server holds the file) as well as a form of accountability

and defamation-freeness. The former guarantees that if the server

does not have the file then the judge will determine that it cheated;

while the latter guarantees that if the server holds the file then

the judge will determine that it did not cheat. This is analogous to

accountability and defamation-freeness in the setting of 2PC [5].

We then describe a general transformation that turns any PoS into

an APoS. The transformation relies on simple and efficient building

blocks: collision-resistant hash functions and digital signatures.

We then consider how to extend an APoS with ALAs. We use

an ALA between the client and server that stipulates the damages

the server must pay if the APoS verification fails. This introduces

strategic incentives which wemodel and analyze as a CIG. However,

similar to the 2PC case, a rational client (as opposed to an honest

one) has an incentive to frame the server to receive the damages.

To address this we use a dual ALA between the client and the judge.

We analyze the equilibria in both of the induced CIGs and show

the conditions under which they guarantee that both parties will

behave honestly.

Concrete analysis. We show how to apply our framework to

concrete PVC and PoS protocols. Specifically, we design concrete

ALAs for the 2PC protocols of Asharov and Orlandi[5], Kolesnikov

andMazolemoff[20] andHong et al[18]. and the APoS protocols that

result from applying our transformation to the PoS protocols of Juels

and Kaliski[19], Ateniese et al[6] and Shacham and Waters[21].

2 RELATEDWORK
Secure two-party computation. 2PC was introduced by Yao [24]

and the two main adversarial models are the semi-honest model

where the adversary follows the protocol but tries to learn addi-

tional information and the malicious model where the adversary

deviates arbitrarily. Covert adversaries, which were introduced by

Aumann and Lindell [8], wish to deviate from the protocol as long

as they are not detected. While the covert model is clearly and ex-

plicitly meant to capture rational adversaries, the strategic behavior

of covert adversaries has, as far as we know, never been studied ex-

plicitly. In other words, protocols secure against covert adversaries

guarantee that deviation is detectable with at least some probability

Y, but the impact of this guarantee on a rational adversary’s strategy

has not been formally studied. Our work provides such a study and,

in addition, extends the covert model to consider what happens

not only when deviations are detected but when deviations are

punished. As discussed in Section 1, ALAs require the underlying

cryptographic protocol to be auditable in the sense that a third

party can verify whether one of the participants deviated from the

protocol. Auditability has received some attention in the setting of

secure computation. For example, Asharov and Orlandi [5] intro-

duce publicly-verifiable covert secure computation (PVC) which

augments covert protocols with a certificate that allows honest par-

ties to prove their innocence. They proposed a garbled circuit-based

protocol which was later improved by Kolesnikov and Malozemoff

[20] and then by Hong et al. [18]. Baum, Damgard and Orlandi

[11] show how to design PVC protocols whose correctness can be

verified by a trusted third party after the execution of the proto-

col. Cunningham, Fuller and Yakoubov [12] propose completely

identifiable auditability, which allows the third party to identify the

cheating parties in the protocol. In work more closely related to

our own, Zhu, Ding and Huang [25] design and analyze PVC pro-

tocols with lightweight audit algorithms that can be implemented

using smart contracts. The judge is optimistic and is only invoked

if a dispute arises. There are several differences between our ap-

proaches. First, our framework relies on legal contracts and not

blockchains/smart contracts—though the audits of the underlying

auditable protocols could be implemented using smart contracts.

Also, the approach taken in [25] requires that the parties deposit

funds up front which is not the case with ALAs. More fundamen-

tally, though, the framework of Zhu et al. assumes that the strategic

interaction between the parties is a zero-sum game in the sense

that the loss to the honest party is exactly the gain to the adver-

sary. While this might apply in some settings, it is not always the

case. Furthermore, the game-theoretic analysis is independent of

blockchain transactions fees and assumes the deposits are high

enough to deter framing.

Proofs of storage. Proofs of storage were introduced by Juels and

Kaliski [19] and Ateniese et al. [6]. The former considered privately-

verifiable proofs of retrievability whereas the latter considered

publicly-verifiable proofs of data possession. PoS were further stud-

ied by Shacham and Waters [21] who gave both privately- and

publicly-verifiable constructions. Dodis, Vadhan and Wichs then

showed a connection between privately-verifiable PoS and hard-

ness amplification. They present the idea of PoS codes and show

improved constructions[14]. Ateniese, Kamara and Katz described a

general compiler that transforms any identification protocol into a

publicly-verifiable PoS [7]. PoS have been used in rational settings

such as cryptocurrencies. Filecoin[3] is a decentralized storage net-

work based on PoS that allows its miners to rent out storage to

customers for tokens. In this work, we construct highly-efficient

PoS against rational adversaries. As a building block, we also de-

scribe an auditable PoS against standard malicious adversaries that

may be of independent interest.

3 PRELIMINARIES AND NOTATION
Notation. The security parameter is denoted 𝑘 ∈ N. A function

is negligible in 𝑘 if it is dominated by any inverse polynomial. The

set of all binary strings of length 𝑛 is denoted {0, 1}𝑛 and the set of

all binary strings of arbitrary lengths is denoted {0, 1}∗. We write

𝑥
$← 𝑋 to denote that 𝑥 is sampled uniformly at random from a set

𝑋 . When an algorithm Alg
1
has oracle access to an algorithm Alg

2

wewriteAlgAlg2

1
(·). The output of an interactive protocolΠ executed

between parties 𝑃1 and 𝑃2 with inputs 𝑥1 and 𝑥2, respectively, is

denoted by (𝑦1, 𝑦2)← Π𝑃1,𝑃2
(𝑥1, 𝑥2), where 𝑦1 is 𝑃1’s output and 𝑦2

is 𝑃2’s output. We denote the space of valid inputs to the protocol

as IΠ = I1 × I2 where I𝑖 is the space of valid inputs for party 𝑖 .

Similarly, we define the output space OΠ = O1 ×O2. Then for the

protocol (𝑦1, 𝑦2) ← Π𝑃1,𝑃2
(𝑥1, 𝑥2) we say that 𝑥𝑖 ∈ I𝑖 and 𝑦𝑖 ∈ O𝑖 .

Additionally let TΠ be the set of valid transcripts of the protocol

where TΠ = T1 × T2 and T𝑖 is the set of all messages sent by party 𝑖

during the protocol. Whenever the protocol is obvious from context



we drop the subscript for convenience. We denote the expected

utility (in a game-theoretic sense) to a player 𝑃 due to playing

a strategy 𝑆 as U𝑃 [ 𝑆 ]. This expectation is calculated over the

outcomes due to the distribution of the other players’ strategies

and any randomness in the game being played. The expected utility

of playing 𝑆 when other players are playing the strategy vector 𝑆−
is denoted as U𝑃 [ 𝑆, 𝑆− ]. A player’s best response is the strategy
that gives maximum expected utility given the game and the other

players’ strategies.

Collision resistant hash functions. A hash function Hash = (Gen,
Hash) consists of two polynomial-time algorithms that work as

follows. Gen takes as input a security parameter 𝑘 and outputs

a (non-secret) key 𝛼 . Hash takes as input a key 𝛼 and a message

𝑚 ∈ {0, 1}∗ and outputs a hash ℎ ∈ {0, 1}𝑘 . The security of a

hash function family is formalized using the following randomized

experiment where A is an adversary:

• CollA (𝑘):

(1) compute 𝛼 ← Gen(1
𝑘

);

(2) (𝑚1,𝑚2)← A(𝛼);

(3) if𝑚1 ̸= 𝑚2 and Hash(𝛼,𝑚1) = Hash(𝛼,𝑚2) output 1 else

output 0.

We say that Hash is collision-resistant if for all PPT adversaries A,

Pr [CollA (𝑘) = 1 ] ≤ negl(𝑘),

where the probability is over the coins of Gen and A.

Digital signatures. A digital signature scheme Sig = (Gen, Sign,
Vrfy) consists of three polynomial-time algorithms that work as fol-

lows. Gen takes as input a security parameter 𝑘 and outputs a sign-

ing key sk and a verification key vk. Sign takes as input a signing

key sk and a message𝑚 and outputs a signature 𝜎 . Vrfy takes as in-

put a verification key vk, a message𝑚 and a signature 𝜎 and outputs

a bit 𝑏. A signature scheme is correct if for all 𝑘 ∈ N, for all (vk, sk)

output by Gen(1
𝑘

), for all𝑚 ∈ {0, 1}∗, Vrfy(vk,𝑚, Sign(sk,𝑚)) = 1.

The security of a digital signature scheme is formalized using

the following randomized experiment:

• ForgeA (𝑘):

(1) compute (sk, vk)← Gen(1
𝑘

);

(2) (𝑚,𝜎)← ASign(sk,·)
(vk);

(3) let 𝑄 be the set of messages on which the Sign oracle was

queried

(4) if Vrfy(vk,𝑚, 𝜎) = 1 and𝑚 ̸∈ 𝑄 , output 1 else output 0.

We say that a signature scheme Sig is existentially unforgeable if

for all PPT adversaries A
Pr

[
ForgeA (𝑘) = 1

]
≤ negl(𝑘),

where the probability is over the coins of Gen and A.

PVC protocols. We assume the reader is familiar with the defini-

tions of 2PC. Covert protocols include an additional parameter Y

called the deterrence factor which is a lower bound on the probabil-

ity that cheating is detected. PVC protocols further allow the honest

parties to prove that cheating occurred to an external observer.

Definition 3.1. A publicly-verifiable covert protocol PVC = (Π,

Blame, Judge) consists of a covert 2PC protocolΠ and two polynomial-

time algorithms Blame and Judge as follows:

• cert ← Blame(id, view): is a deterministic algorithm that

takes as input the identifier of the cheating party id and a

view of the protocol and outputs a certificate cert.
• 𝑏 ← Judge(cert): is deterministic algorithm that takes as

input a certificate cert and outputs 1 if the accused party is

determined to have cheated and 0 otherwise.

We say that a PVC protocol is (Y, `, 𝜙)-secure if it satisfies covert
security, accountability and defamation-freeness. Covert security
guarantees that a cheating party is detected with probability at

least Y. Accountability guarantees that if an honest party outputs

a certificate of cheating for a dishonest party, Judge(cert) outputs
0 with probability at most `. Defamation-freeness guarantees that

if a party outputs a certificate cert that blames an honest party,

Judge(cert) outputs 1 with probability at most 𝜙 .

Proofs of storage. A PoS is a protocol executed between a server

that stores a dataset and a client that wishes to verify the integrity

of the data. A publicly-verifiable PoS has the property that anyone

in possession of the client’s public key can run the verification

of integrity. We recall the syntax and security definitions for a

publicly-verifiable PoS.

Definition 3.2 (Proof of storage). A publicly-verifiable proof of

storage PoS = (Gen, Encode,Chall, Prove,Vrfy) consists of five

polynomial-time algorithms that work as follows:

• (sk, pk)← Gen(1
𝑘

): is a probabilistic algorithm that takes as

input the security parameter 𝑘 and outputs a secret key sk
and a public key pk.
• (𝑒𝑒𝑒, st)← Encode(sk, 𝑓𝑓𝑓 ): is a probabilistic algorithm that takes

as input a secret key sk and a file 𝑓𝑓𝑓 and outputs an encoded

file 𝑒𝑒𝑒 and a state st.
• ch← Chall(pk, st): is a probabilistic algorithm that takes as

input a public-key pk and a state st and outputs a challenge

ch.
• 𝜋 ← Prove(pk, 𝑒𝑒𝑒, ch): is a deterministic algorithm that takes

as input a public key pk, an encoded file 𝑒𝑒𝑒 and a challenge

ch and outputs a proof 𝜋 .

• 𝑏 ← Vrfy(pk, st, ch, 𝜋 ): is a deterministic algorithm that takes

as input a public key pk, a state st, a challenge ch and a proof

𝜋 and outputs a bit 𝑏.

We say that PoS is complete if for all 𝑘 ∈ N, for all (sk, pk) out-

put by Gen(1
𝑘

), for all 𝑓𝑓𝑓 ∈ {0, 1}poly(𝑘)
, for all (𝑒𝑒𝑒, st) output by

Encode(sk, 𝑓𝑓𝑓 ), for all ch output by Chall(pk, st), for all 𝜋 output by

Prove(pk, 𝑒𝑒𝑒, ch), Vrfy(pk, st, ch, 𝜋 ) outputs 1.

A publicly-verifiable PoS is typically used as follows. The client

runs (sk, pk)← Gen(1
𝑘

) to generate a key pair. It keeps sk secret
and sends pk to the verifier (which could be the client itself of

course). The client then encodes its file by computing (𝑒𝑒𝑒, st) ←
Encode(sk, 𝑓𝑓𝑓 ) and sends 𝑒𝑒𝑒 to the server and st to the verifier. To

verify the integrity of the file, the verifier sends a challenge ch←
Chall(pk, st) to the server who returns a proof 𝜋 ← Prove(pk, 𝑒𝑒𝑒, ch).

Finally, the verifier verifies the proof by computing𝑏 ← Vrfy(pk, st,
ch, 𝜋 ). The security property we require is the following: if the proof

verifies then the server must be storing the file (or some efficiently

extractable form of the file). We refer the reader to the definitions

of Ateniese et al. [7] for the formalization of this property.



4 ADVERSARIAL LEVEL AGREEMENTS
We augment cryptographic protocols with contracts that stipulate

the punishments parties must incur if they deviate from the pro-

tocol. We call such contracts adversarial level agreements. Note

that it is arguably the avoidance of punishment rather than the

evasion of detection that is the true motivation of a covert adver-

sary; i.e., it is the consequence of detection that makes detection

undesirable, not detection on its own. As such, modeling and inte-

grating punishment—here through contracts—is natural. Also, in

practice, many cryptographic protocols operate in environments

where there are (at least) implicit consequences for deviating.

We show that, using our framework, one can design crypto-

graphic protocols that achieve new tradeoffs: namely, one can

achieve better efficiency effectively for free, i.e., without any loss

of security (against rational adversaries). To do so, it suffices to

increase the damages in the ALA. Note that such a tradeoff is not

possible with standard covert protocols because the covert model

does not capture punishment. In the covert model, the only param-

eter we can tune is the deterrence factor (i.e., the probability of

being detected) and there is a tight dependency between deterrence

and efficiency.

ALAs. For a cryptographic protocol Π, an adversarial level agree-

ment ALA
Π,𝑘 (d) includes: (1) a specification of Π, defining each

party’s prescribed behavior; (2) damages 𝑑 due from each party

if found deviating from Π, where d = (𝑑1, . . . , 𝑑𝑛) is a vector that

describes the damages for each party. The inclusion of contracts and

punishment in cryptographic protocols introduces new strategic

interactions between the parties. We formalize these interactions

as games we refer to as cryptographic inspection games which are a

variant of inspection games.

Inspection games. An inspection game is two-player game be-

tween an inspectee who wishes to cheat and an inspector who

wishes to deter cheating. Inspection games were introduced in the

1960s in the context of nuclear disarmament and are used to design

nuclear inspections under nuclear Non-Proliferation Treaties. It

is well-known that inspection games have no pure strategy Nash

equilibria [9]. Informally if the inspector always inspects, the in-

spectee never cheats but then the inspector would never inspect

so the inspectee would always cheat etc. Though pure equilibria

do not exist, an inspection game could have mixed equilibria but

they often have a positive probability of cheating and are there-

fore undesirable. To overcome this, an inspection game is usually

converted to a leadership variant by having the inspector commit

to a mixed strategy for which the inspectee’s best response is not

to cheat. This is an application of the leadership principle in game

theory [22] where the first player (the leader) declares and commits

to a strategy which forces the second player (the follower) to play

its the best response. The leader then has the power to choose a

favorable equilibrium in this sequential game. We refer to [9] for a

comprehensive summary of the applications of inspection games

and the consequences of inspector leadership.

Cryptographic inspection games. A CIG is a two-party game be-

tween an inspectee that wishes to deviate from a protocol and an

inspector that wishes to enforce honest behavior. There are two

main differences between inspection games and CIGs: (1) inspec-

tion games typically have both false-positives and false-negatives

whereas CIGs have only false-negatives; and (2) in a CIG the in-

spector can be dishonest. We represent CIGs as extensive form

games which are trees that represent a player’s possible actions as

nodes and outcomes as leaves. Each ALA-enhanced cryptographic

protocol results in a CIG. We then analyze the CIG to find ALA

parameters that will guarantee the desirable equilibrium where the

parties follow the protocol.

5 AUGMENTING TWO-PARTY
COMPUTATIONWITH ALAS

We now show how to use ALAs in secure two-party computation.

As discussed above, we start with a PVC protocol Π and have the

parties sign an ALA that describes Π and the damages they must

pay if they deviate.

PVC protocols. Most two-party PVC protocols have a similar

structure which we now describe. The garbler G creates many gar-

bled circuits and the evaluator E opens and checks all but one of

them. If any of the checks fail, the evaluator receives a publicly-

verifiable certificate of the garbler’s deviation. If all the checks

pass, the evaluator evaluates the unopened circuit and receives

the output which it then sends to the garbler. The protocol guar-

antees accountability and defamation-freeness (see Section 3 for

definitions).

Adversarial settings. We consider two adversarial settings:

(1) Rational garbler vs. honest evaluator: the evaluator follows

the protocol but the garbler can deviate to increase its utility;

(2) Rational garbler vs. framing evaluator: when damages are

introduced, a rational evaluator has an incentive to frame

an honest garbler.

For each of these settings, we first describe the CIGs that result

from the strategic interactions between the parties. We then analyze

these games to find the damages that guarantee that the rational

parties behave honestly.

5.1 Rational Garbler vs. Honest Evaluator
When an (Y, `, 𝜙)-secure PVC protocol is enhanced with an ALA

between an honest evaluator and a rational garbler, it results in the

CIG depicted in Figure 1. The garbler has a choice between deviating

whichwe denoteDeviation and behaving honestly whichwe denote
NoDeviation. When the garbler behaves honestly (the left sub-tree)

the evaluator’s circuit checks pass, it evaluates the circuit and both

parties receive the output and their utilities𝑢𝑜G and𝑢𝑜E. On the other

hand, when the garbler deviates (the right sub-tree), the deviation

is detected by the evaluator with probability at least Y (from the

deterrence of Π). This is a probabilistic event, represented by a

hollow chance node in the tree. When the deviation is detected, the

Judge is invoked and its audit gives the same output as the honest

evaluator except with probability ` (from the accountability Π).

If the audit outputs 1 the garbler is punished and pays 𝑑G to the

evaluator. If the audit outputs 0, which occurs with probability `,

the evaluator is punished and pays 𝑑E to the Judge.

We denote the garbler’s utility for deviating (and potentially

learning information about the evaluator’s input) as 𝑢𝑖G and the
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Figure 1: CIG between a rational garbler and an honest eval-
uator.

loss to the evaluator as ℓ𝑖E. If a deviation occurs, the garbler (resp.

evaluator) receives this utility (resp. loss) regardless of the Judge’s

decision. We analyze the game in the following Lemma.

Lemma 5.1. Let Π be an (Y, `, 𝜙)-secure PVC protocol between a
rational garbler and an honest evaluator that is augmented with an
ALA with damages 𝑑G and 𝑑E. If

𝑑G ≥
𝑢𝑖G − 𝑢

𝑜
G

Y(1 − `)

,

then the dominant strategy for a rational garbler is to follow the
protocol.

Proof. To find the garbler’s dominant strategy, we compare its

expected utilities from the actions available at the blue node of

the game: namely, deviating from the protocol and not deviating.

Clearly, we have UG [NoDeviation ] = 𝑢𝑜G. Furthermore,

UG [Deviation ] = (1 − Y)𝑢𝑖G + Y

(
`𝑢𝑖G + (1 − `)(𝑢𝑖G − 𝑑G)

)
= 𝑢𝑖G − Y(1 − `)𝑑G

≤ 𝑢𝑖G − Y(1 − `)

𝑢𝑖G − 𝑢
𝑜
G

Y(1 − `)

= 𝑢𝑜G,

where the inequality holds by the condition in the Lemma. The

garbler’s expected utility from deviating is then at most its expected

utility from behaving honestly, from which the Lemma follows.

5.2 Rational Garbler vs. Framing Evaluator
When an (Y, `, 𝜙)-secure PVC protocol is enhanced with an ALA

between a rational garbler and a framing evaluator, it results in the

CIG depicted in Figure 2. In this game, the evaluator has new strate-

gies which account for framing. The garbler’s strategies remain the

same as in the previous game. The garbler chooses to deviate or to

behave honestly. If the garbler is honest (the left sub-tree) then the

evaluator’s checks pass. If the garbler deviates (the right sub-tree)

the evaluator’s checks pass with probability 1 − Y. These two blue

nodes represent an information set. The evaluator now has a choice

between framing which we denote by Frame and not framing which

we denote by NoFrame. If it chooses to frame the garbler, the au-

dit will output 0 except with probability 𝜙 . This is a chance node

whose probability is derived from the defamation-freeness of Π. If

the audit outputs 1, the evaluator receives its utility 𝑢
𝑓

E . If the audit
outputs 0, the evaluator is punished for attempted framing and has

to pay damages 𝑑E. The garbler’s utility for deviating is 𝑢𝑖G and the

loss to the evaluator is ℓ𝑖E and they remain regardless of the Judge’s

decision. The evaluator’s utility for framing is 𝑢
𝑓

E . This is equal to
the damages imposed on the garbler, 𝑑G, since the damages are paid

to the evaluator. The damages paid by the evaluator for framing is

𝑑E. Our next lemma, whose proof is in the full version, shows how

to set these damages so that both parties behave honestly [15].

Lemma 5.2. Let Π be an (Y, `, 𝜙)-secure PVC protocol between a
rational garbler and a framing evaluator that is augmented with an
ALA with damages 𝑑G and 𝑑E. If,

𝑑E ≥
𝜙𝑑G
1 − 𝜙 ,

then the dominant strategy for a framing evaluator is to follow the
protocol.

Notice that when we set the damages to rule out the evaluator’s

framing strategy, the game reduces to the CIG of Figure 1 and

the garbler has the choice to deviate or not. But if we also set the

damages according to the conditions of Lemma 5.1, then we know

that the garbler will not deviate in this game. So by setting damages

according to both Lemmas, we can ensure that both the garbler and

the evaluator will behave honestly.

Concrete improvements. Our framework can be applied to PVC

protocols to achieve two kinds of improvements: (1) setting con-

crete deterrence factors; and (2) improving efficiency. Concrete

instantiations for the PVC protocols of Hong et al. [18], Koleznikov

and Malozemoff [20] and Asharov and Orlandi [5] are presented

in Supplement B. At a high level, our framework allows the PVC

protocols to use the lowest possible deterrence factor, with appro-

priate damages according to Lemmas 5.1 and 5.2. We note here that

the setting of appropriate damages will depend on both the setting

and the participating parties, and is an interesting question in its

own right.

6 AUDITABLE PROOFS OF STORAGE
In order to apply our framework to proof of storage (PoS) protocols,

we first introduce the notion of auditability in PoS. Once we have

an auditable proof of storage (APoS), we can then augment the

protocol using ALAs similar to our approach for PVC protocols. In

this section we present (1) our definitions for auditable proofs of

storage; (2) a general-purpose tranformation to convert any PoS

to an auditable PoS protocol. In the next section, we will analyze

the CIGs that result from applying ALAs to APoS protocols, and

design ALAs to improve the efficiency of concrete PoS protocols.
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Figure 2: CIG between an rational garbler and a framing evaluator.

6.1 Definitions for APoS
We now introduce and formalize the notion of an auditable proof of
storage which is a PoS whose execution can be audited by a trusted

third party called the Judge. In addition to soundness, an APoS

has to satisfy two properties: (1) accountability which, roughly,

guarantees that the Judge will correctly detect when the file has

been tampered with; and (2) defamation-freeness which, roughly,
guarantees that the Judge cannot be fooled (by the client) into

believing that the file has been tampered with if it has not.

Definition 6.1 (Auditable PoS). An auditable proof of storage

APoS = (Gen,Π,Chall, Prove,Vrfy,Audit) is composed of five

polynomial-time algorithms and one two-party protocol.Gen,Chall,
Prove and Vrfy are as in a standard PoS (Definition 3.2) and Π,

Receipt and Audit work as follows:

• (stJ, clk, srk) ← Gen(1
𝑘

): is a probabilistic algorithm that

takes as input the security parameter 𝑘 and outputs a state

st, a client key clk = (clpk, clsk) and a server key srk =

(srpk, srsk) where clpk, srpk are public keys for the client

and the server respectively.

• ((stC, rec);𝑒𝑒𝑒) ← ΠC,S ((clk, 𝑓𝑓𝑓 ); srk): is a two-party protocol

executed between the client and the server. The client inputs

a client key clk and a file 𝑓𝑓𝑓 , and the server inputs a server

key srk. The client receives as output a state stC and a receipt

rec whereas the server receives an encoded file 𝑒𝑒𝑒 .

• 𝑏 ← Audit(stJ, rec∗, 𝑒𝑒𝑒∗): is a deterministic algorithm that

takes as input a state st, a receipt rec∗ from the client. It also

receives an encoded file 𝑒𝑒𝑒∗ from the server—which may not

be the original file and could possibly be empty if the server

doesn’t respond. It outputs a bit 𝑏 which is 1 if the server is

found guilty and 0 otherwise

We say thatAPoS is complete if for all𝑘 ∈ N, for all (stJ, clk, srk)←
Gen(1

𝑘
), for all 𝑓𝑓𝑓 ∈ {0, 1}poly(𝑘)

, for all ((stC, rec);𝑒𝑒𝑒) ← ΠC,S ((clk, 𝑓𝑓𝑓 );

srk), for all ch output byChall(clpk, stC), for all𝜋 output byProve(srk,
𝑒𝑒𝑒, ch), Vrfy(clk, stC, ch, 𝜋 ) outputs 1.

An auditable PoS is used as follows: The Judge runs Gen to

generate a state stJ, a client key clk and a server key srk. This step
could be replaced by an interactive protocol that generates the

keys—we only require that the Judge be able to trust the keys. The

client and server then execute the Π protocol on a file 𝑓𝑓𝑓 . From

this, the client receives a receipt rec and the server receives an

encoded file 𝑒𝑒𝑒 . Chall, Prove and Vrfy are used as in a standard

publicly-verifiable PoS. If at any time, the client claims the server

is not storing the file, the Judge runs 𝑏 ← Audit(stJ, rec∗, 𝑒𝑒𝑒∗) where
rec∗ is the receipt provided by the client and 𝑒𝑒𝑒∗ is the encoded file

provided by the server.

Soundness. The notion of soundness of auditable PoS is similar to

that of standard PoS. We formalize this with the following random-

ized experiments where K is a stateful extractor which interacts



with the stateful adversary A and attempts to output the original

file 𝑓𝑓𝑓 :

• OutputAdvA (𝑘):

(1) generate (stJ, clk, srk)← Gen(1
𝑘

);

(2) repeat 𝑝(𝑘) times where 𝑝 is a polynomial;

(a) the adversary computes 𝑓𝑓𝑓 ← A;

(b) compute ((stC, rec);𝑒𝑒𝑒)← ΠC,A ((clk, 𝑓𝑓𝑓 ); srk)
(3) the adversary computes 𝑓𝑓𝑓 ∗ ← A;

(4) compute ((stC, rec);𝑒𝑒𝑒∗)← ΠC,A ((clk, 𝑓𝑓𝑓 ∗); srk)
(5) compute ch← Chall(clpk, stC);

(6) the adversary computes 𝜋∗ ← A(𝑒𝑒𝑒∗, ch);

(7) output (ch, 𝜋∗).

• OutputExtA,K (𝑘):

(1) generate (stJ, clk, srk)← Gen(1
𝑘

);

(2) repeat 𝑝(𝑘) times where 𝑝 is a polynomial;

(a) the adversary computes 𝑓𝑓𝑓 ← A;

(b) compute ((stC, rec);𝑒𝑒𝑒)← ΠC,A ((clk, 𝑓𝑓𝑓 ); srk)
(3) the adversary computes 𝑓𝑓𝑓 ∗ ← A;

(4) compute ((stC, rec);𝑒𝑒𝑒∗)← ΠC,A ((clk, 𝑓𝑓𝑓 ∗); srk)
(5) repeat 𝑞(𝑘) times where 𝑞 is a polynomial;

(a) the extractor computes ch𝑖 ← Chall(clpk, stC);

(b) the adversary computes 𝜋𝑖 ← A(𝑒𝑒𝑒∗, ch𝑖 );
(6) the extractor computes ((ch𝑒 , 𝜋𝑒 ), 𝑓𝑓𝑓 𝑒 )← K(clk, stC, rec,
{ch𝑖 , 𝜋𝑖 });

(7) output (ch𝑒 , 𝜋𝑒 ).

• SoundA,K (𝑘):

(1) run OutputExtA,K (𝑘);

(2) obtain 𝑓𝑓𝑓 ∗ ← A and ((ch𝑒 , 𝜋𝑒 ), 𝑓𝑓𝑓 𝑒 )← K(clk, st∗C, rec
∗,

{ch𝑖 , 𝜋𝑖 }) from the above run;

(3) if 1 ← Vrfy(clk, stC, ch𝑒 , 𝜋𝑒 ) and 𝑓𝑓𝑓 𝑒 ̸= 𝑓𝑓𝑓 ∗ output 1 else

output 0.

Definition 6.2 (Soundness). An auditable proof of storage APoS =

(Gen,Π,Chall, Prove,Vrfy,Audit) is Y-sound if there exists an ex-

pected polynomial-time extractor K such that for all PPT adver-

saries A, OutputAdvA (𝑘) and OutputExtA,K (𝑘) are identically

distributed and,

Pr

[
SoundA,K (𝑘) = 1

]
≤ Y,

where the probabilities are over the coins of Gen, Π, A.

Accountability. As discussed above, accountability guarantees

that the Judge will correctly determine if the file has been tam-

pered with. Note that since standard publicly-verifiable PoS al-

low for a third party to verify the integrity of the file, they nat-

urally achieve accountability if we simply let the Judge run the

verification algorithm using the client’s public key and state. We

formalize accountability with the following randomized experi-

ment where A is a stateful adversary, 𝑓𝑓𝑓 is a file and APoS =

(Gen,Π,Chall, Prove,Vrfy,Audit) is an auditable PoS:

• AccntA,𝑓𝑓𝑓 (𝑘):

(1) generate (stJ, clk, srk)← Gen(1
𝑘

);

(2) compute ((stC, rec);𝑒𝑒𝑒)← ΠC,A ((clk, 𝑓𝑓𝑓 ); srk)
(3) the adversary computes 𝑒𝑒𝑒∗ ← A;

(4) if Audit(stJ, rec, 𝑒𝑒𝑒∗) = 0 and 𝑒𝑒𝑒∗ ̸= 𝑒𝑒𝑒 output 1 else output 0.

Definition 6.3 (Accountability). An auditable proof of storage

APoS = (Gen,Π,Chall, Prove,Vrfy,Audit) is 𝛼-accountable if for all
PPT adversaries A, for all files 𝑓𝑓𝑓 ,

Pr

[
AccntA,𝑓𝑓𝑓 (𝑘) = 1

]
≤ 𝛼

where the probabilities are over the coins of Gen, Π, A.

Defamation-freeness. The third security property we require of

an APoS is defamation-freeness which guarantees that the Judge

cannot be fooled into believing that the file has been tampered with

when it has not. We formalize defamation-freeness with the follow-

ing randomized experiment where A is a stateful adversary, 𝑓𝑓𝑓 is

a file and APoS = (Gen,Π,Chall, Prove,Vrfy,Audit) is an auditable

PoS:

• Defame-FreeA,𝑓𝑓𝑓 (𝑘):

(1) generate (stJ, clk, srk)← Gen(1
𝑘

);

(2) compute ((stC, rec);𝑒𝑒𝑒)← ΠA,S ((clk, 𝑓𝑓𝑓 ); srk)
(3) the adversary computes rec∗ ← A;

(4) if Audit(stJ, rec∗, 𝑒𝑒𝑒) = 1 output 1 else output 0.

Definition 6.4 (Defamation-freeness). An auditable proof of stor-

age APoS = (Gen,Π,Chall, Prove,Vrfy,Audit) is 𝛿-defamation-free

if for all PPT adversaries A, for all files 𝑓𝑓𝑓 ,

Pr

[
Defame-FreeA,𝑓𝑓𝑓 (𝑘) = 1

]
≤ 𝛿

where the probabilities are over the coins of Gen, Π, A.

Notation. Throughout this work, we will refer to an APoS that

is Y-sound, 𝛼-accountable and 𝛿-defamation-free simply as being

(Y, 𝛼, 𝛿)-secure.

6.2 A PoS-to-APoS Transformation
In this section we present a transformation that converts any

PoS to an auditable PoS. Our transformation makes use of a hash

function family Hash = (Gen,Hash) and of a signature scheme

Sig = (Gen, Sign,Vrfy). We assume authenticated channels between

all the parties.

Overview. At a high level, our transformation allows the client

and server to agree on the file that is to be stored, by both signing

a hashed digest of the file. If a dispute arises during the protocol

and the client asks the Judge to perform an audit, it checks the

signed digest. If both the signatures verify, the client is honest, and

if the file stored matches the signed digest, then the server is honest.

The transformation works as follows: the Gen algorithm creates a

public/private key pair for the underlying PoS, a key𝑤 for the hash

function family, and two signing/verification key pairs: one for the

client and one for the server. The two-party protocol Π is executed

between the client C and the server S. The client encodes the file 𝑓𝑓𝑓
and signs its hash ℎ. It then sends the encoded file 𝑒𝑒𝑒 , its hash ℎ and

its signature 𝜎C on the hash to the server. The server checks if ℎ is

indeed the hash of the encoded file 𝑒𝑒𝑒 and if so signs it as well. It then

returns the hash ℎ, the signature 𝜎𝐶 and its own signature 𝜎S on the

hash. Finally, the client verifies that 𝜎S is indeed a signature on ℎ.

The receipt rec consists of the hash ℎ and the two signatures 𝜎C and

𝜎S. The Chall, Prove and Vrfy algorithms are the same as the Chall
and Prove and Vrfy algorithms of the underlying PoS. The Audit
algorithm takes as input a receipt rec = (ℎ, 𝜎C, 𝜎S) from the client



and some encoded file 𝑒𝑒𝑒∗ from the server. The Judge first checks

whether 𝜎C and 𝜎S are indeed signatures overℎ. If not, it determines

that the client is dishonest. If both signatures are valid and if the

encoded file 𝑒𝑒𝑒∗ hashes to the hash ℎ, then the server is considered

honest. On the other hand, if the two signatures are valid but 𝑒𝑒𝑒∗

does not hash to ℎ then the server is considered dishonest since 𝑒𝑒𝑒∗

could not be the original encoded file 𝑒𝑒𝑒 . The transformation and

security proof are detailed in Appendix A.

7 AUGMENTING APOS WITH ALAS
We now show how our techniques are applicable to PoS protocols.

In this setting, the client C and the server S agree on the ALA. We

assume an out-of-band “traditional” contract that specifies the hash

of the file and the damages the server will pay to the client if the

file has been tampered with. To enhance an APoS with an ALA, the

ALA has to be signed by both parties after they agree on the file.

We denote by ALA(𝑑S) an adversarial level agreement with server

damages 𝑑S. The strategic interaction between a rational server and

client in an ALA-enhanced APoS protocol can be viewed as a CIG

where the client plays the role of the inspector and the server plays

the role of the inspectee.

Overview of CIG. The client’s actions are the set of possible

soundness error parameters for the APoS and the server’s actions

are to either keep the file or lose the file. Here, the client “inspects”

the server by using the APoS. If the inspection fails the client

invokes the Judge and the server is punished by having to compen-

sate the client for losing the file. The client’s strategies can then

be viewed as a mixed strategy over the actions “inspection passes”

which we denote Pass and “inspection fails” which we denote Fail,
where the former is played with probability 1 − Y and the latter is

played with probability Y. More precisely, the client picks a sound-

ness error Y which gives it a probabilistic payoff when the server

tampers with the file. When the server does not tamper with the

file, however, the client will always have the same deterministic

payoff (which is the cost of the APoS or the “inspection”). We model

these payoffs as mixing over two strategies “pass” and “fail” which:

(1) have different payoffs when the server tampers with the file;

(2) have the same payoffs when the server does not tamper with

the file. In other words, when the server tampers with the file, the

APoS can “pass” or “fail” and the client gets the appropriate payoffs

but when the server does not tamper, the actions “pass” and “fail”

give the same payoff.

Given solely this choice, a client would want to pick a low Y, or

even Y = 0 in order to increase the probability of the inspection

passing. However, the technical difficulty is that all practical con-

structions of proofs of storage protocols have non-zero soundness

error. Additionally, in order to reduce the soundness error, the secu-

rity parameter of these schemes must be increased. With a greater

security parameter comes greater computation costs both for the

server and the client. These costs can also depend on other factors,

such as the cost of computation or storage. In order to simplify

the model, we assume that these costs of computation for both the

server and the client are fixed constant values.

On the other hand, the server strategies are mixed strategies

over the set of actions “tamper with file” which we denote Tamp
and “do not tamper with file” which we denote NoTamp, where the

former is played with probability 𝑡S and the latter is played with

probability 1−𝑡S. Similar to the 2PC case, the client has an incentive

to frame the honest server in order to receive compensation.

In all the games that follow, the Judge runs Audit to identify the

guilty party. If Audit finds the server guilty the Judge enforces the

damages 𝑑S to the server and compensates the client. On the other

hand, if the audit finds the server innocent the Judge enforces the

damages 𝑑C to the client for attempting to frame the honest server.

Adversarial settings. We consider two adversarial settings:

(1) Rational server vs. honest client: the client follows the pro-

tocol but the server can deviate if it increases its utility.

(2) Rational server vs. framing client: the server is rational (and

may even choose not to participate) and the client is rational

and may try to frame the server.

7.1 Rational Server vs. Honest Client
In this section, we describe how to enhance an APoS with an ALA

and, specifically, how to set the damages in the ALA as a function

of the parameters of underlying APoS. Here, we focus on the case

of an honest client and a rational server. Our goal is to show that

if the damages in the ALA are set appropriately, a rational server

will never tamper with the file.

APoS for honest clients. The simplest APoS for the setting of

honest clients works as follows. Given a standard PoS, one simply

defines the Audit algorithm to always output 1. Since the client is

honest, Audit will only be invoked when PoS verification fails. This

simple construction is (Y, 0, 1)-secure, where Y is the soundness error

of the underlying PoS, 𝛼 = 0 because Audit never outputs 0 and

𝛿 = 1. Note that the defamation-freeness of this APoS is the worst

possible but this does not matter as an honest client will never

invoke the Judge when PoS verification succeeds. We describe the

corresponding CI game and prove the following theorem about the

equilibrium strategies of a rational server.

Game tree. When an (Y, 0, 1)-secure APoS is enhanced with an

ALA between a rational server and an honest client, it results in

the CIG in Figure 3. The server has a choice between Tamp and

NoTamp. When the server chooses not to tamper with the file,

the client’s check always passes. Since the client is constrained to

honest actions, it does nothing. The utilities to both the server and

the client are just the costs of running the check 𝑐S, 𝑐C. On the other

hand, when the server tampers with the file (right sub-tree) it is

detected by the client with probability (1 − Y). This probabilistic
event is denoted by the hollow chance node. When the tampering is

detected, the client invokes the (trivial) Judge, who always punishes

the server. The damages are paid as compensation to the client. The

gain to the server from tampering with the file is denoted as 𝑔S and
the corresponding loss to the client as ℓC. If the server tampers with

the file, this loss to the client and the gain to the server is part of

their utilities – even if the tampering is not detected by the client.

We analyze the game in the following Theorem, whose proof is in

the full version of our paper [15].

Theorem 7.1. Let Π be an (Y, 0, 1)-secure APoS protocol between a
rational server and an honest client that is augmented with an ALA
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Figure 3: CIG between a rational server and an honest client.

with damages 𝑑S. If,

𝑑S ≥
𝑔S

(1 − Y) ,

where 𝑔S is the server’s gain when tampering with the file, then the
dominant strategy for a rational server is to not tamper.

7.2 Rational Server vs. Framing Client
We now consider dishonest clients and, specifically, clients that may

want to frame the server. As in the 2PC case, this is an important

setting because the use of an ALA introduces an incentive for the

client to frame the server. As before, we handle framing clients

with a dual ALA between the client and the Judge that specifies

the damages payable to the Judge if the client is caught deviating.

In addition, however, we also include a server fee 𝜑 that the client

pays to the server when a proof verifies. Now, the ALA, the dual

ALA and the server fee together specify a contract parameterized

by (𝑑S, 𝑑C, 𝜑).

Equilibrium conditions. In this setting, we have no guarantee

on client behavior. In particular, the client might invoke the Judge

even when the APoS verification passes. This, in turn, affects the

game from the previous section since the server is no longer sure

of the client’s behavior. In fact, a rational server may not even

want to participate in the protocol. Our first challenge then is to

prove that, even in this setting, there exists an equilibrium where

the client invokes the Judge if and only if the APoS fails to verify

and the server participates in the protocol (in the sense that it

responds to the challenges issued by the client). Notice how this

equilibrium behavior is identical to the honest client setting. At

this equilibrium, we can then derive the soundness error Y that will

force the server to play NoTamp. We prove the existence of the

equilibrium in Lemma 7.2 and Lemma 7.3 and show the final result

about soundness error in Theorem 7.4. We start by proving that an

equilibrium exists where both the server and the client behave as

in the honest client setting.

Server fee. In order to have a rational server respond to a chal-

lenge, even to a possibly framing client, we need to include a server

fee so that the server has some utility for completing a proof. Note

that in the context of PoS the server fees occur naturally; that is,

most cloud services would charge a fee to store a client’s file. Given

that the honest server always receives 𝜑 for completing a proof,

the honest server will always respond to a challenge. Then if the

client does not receive a response to its challenge it assumes that

the server has played Tamp and invokes the Judge. This forces the

server to respond to all challenges even if it has tampered with the
file. This may seem surprising but the intuition is as follows. If the

server does not respond to the challenge, then the client will invoke

the Judge which increases its cost due to the damages it has to pay.

On the other hand, if the server always responds the soundness

error of the APoS creates the possibility that the verification might

succeed even if the file was tampered with. Then we have the first

part of the equilibrium condition: If the client invokes the Judge

only when the APoS verification fails (or) when it does not receive

a response, then the server will always respond to challenges.

Game tree. The game and the payoffs for the server are shown in

Figure 4. After the server chooses whether to play Tamp orNoTamp,
the server can choose whether to “respond to the APoS challenge”

whichwe denote Resp or “not to respond” whichwe denoteNoResp.
Since the client actions are fixed in this game, the client invokes

the Judge only when either receiving no response from the server

(or) when the APoS verification fails. For clarity, in Figure 4, the

outcomes when the Judge is invoked are compressed into a single

outcome and marked with the server’s expected utility as follows:

(1) if the server plays NoTamp and responds to the challenge, the

Judge is never invoked; (2) if the server plays Tamp and responds,

the Judge is invoked when the proof fails (with probability 1 − Y);
(3) If the server does not respond, the client’s view is the same in

both the left and the right sub-tree— it does not know if the server

has played Tamp or NoTamp first, it only knows that NoResp was

played second. Then the green nodes from the game tree are in the

same information set and the actions that are played from either

must be identical. Since the action available to the client is to invoke

or not invoke the Judge, the probability of the Judge being invoked

(𝑝) is the same at both the green nodes. If the server gets away

with tampering, it receives the gain 𝑔S and if the server is found

guilty of tampering (even in error) it pays the damages 𝑑S. We now

state Lemma 7.2, whose proof is in the full version, about the server

response to a challenge using the server’s expected payoffs [15].

Lemma 7.2. Let Π be an (Y, 𝛼, 𝛿)-secure APoS protocol between a
rational server and a framing client augmented with an ALA with
damages 𝑑S and 𝑑C and a fee 𝜑 . If,

𝜑 ≥ 𝑐S
Y

where 𝑐S is the server’s cost of participation, and if the client invokes
the Judge only if APoS verification fails or the server does not respond,
then the dominant strategy for a rational server is to always respond
to a challenge.

We have now shown the first part of the equilibrium condition:

If the client invokes the Judge only when the APoS verification

fails (or) when the server does not respond then the server will
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Figure 4: Server responses in CI game.

always respond to challenges. It only remains to show that if the

server always responds to challenges then the client invokes the

Judge only when the APoS verification fails.

Game tree. If the server responds to all challenges, we have the

game in Figure 5 where the leaves show the client payoffs. The

server makes a choice to play Tamp or NoTamp. The client receives
the server response to its challenge. If the server plays NoTamp the

verification always passes. However, if the server plays Tamp, the
verification passes with the probability Y – the soundness of the

APoS. In both these outcomes the client has the same information

(at the blue nodes). After the verification, the client has a choice

to invoke (I) or not invoke (NI) the Judge. If the verification fails,

the Judge awards the server damages to the client except with

probability 𝛼 . If the verification passes, the Judge’s audit depends

on if the server is playing Tamp or NoTamp. If the server is honest,
the client pays damages to the Judge else the server pays damages

to the client. We now state the following lemma, whose proof is in

the full version [15], which completes the proof that an equilibrium

exists where the server responds to all challenges and the client

only invokes the Judge if the verification fails.

Lemma 7.3. Let Π be an (Y, 𝛼, 𝛿)-secure APoS between a rational
server and a framing client that is augmented with an ALA with dam-
ages 𝑑S and 𝑑C. If the server always responds to the APoS challenges
and if

𝛼 ≤ 𝑑S
𝑑S + 𝑑C

, 𝛿 ≤ 𝑑C
𝑑S + 𝑑C

and 𝑡S ≤
−(𝛿𝑑S − (1 − 𝛿)𝑑C)

−(𝛿𝑑S − (1 − 𝛿)𝑑C) + Y((1 − 𝛼)𝑑S − 𝛼𝑑C)

where 𝑡S is the probability that the server tampers with the file, then
the dominant strategy for a rational client is to invoke the Judge if
and only if the server’s proof does not verify.
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Figure 5: Rational Client actions in APoS

It follows from Lemmas 7.2 and 7.3 that there exists an equilib-

rium where a rational client will honestly execute an (Y, 𝛼, 𝛿)-secure

APoS and a rational server will always respond to challenges with a

proof. This game now simplifies to the tree in Figure 6, which is the

same as that of the honest client and rational server in Section 7.1.

Then under the conditions for Lemmas 7.2 and 7.3, we can use the

insight from the honest client game and derive the values of the

parameters Y, 𝛼 , and 𝛿 such that the server will not deviate from

the protocol. Our final theorem, whose proof is in the full version,

concerns the choice of parameters that a client needs to declare to

incentivize a rational server to not tamper with the file [15].

Theorem 7.4. Let Π be an (Y, 𝛼, 𝛿)-secure APoS between between
a rational server and an honest client that is augmented with an ALA
with damages 𝑑S and 𝑑C and fee 𝜑 . If,

𝜑 ≥ 𝑐S/Y, 𝛼 ≤ 𝑑S
𝑑S + 𝑑C

, 𝛿 ≤ 𝑑C
𝑑S + 𝑑C

, 𝜑+(1−𝛼)𝑑S ≥ 𝑔S/(1−Y)

and 𝑡S ≤
−(𝛿𝑑S − (1 − 𝛿)𝑑C)

Y((1 − 𝛼)𝑑S − 𝛼𝑑C) − (𝛿𝑑S − (1 − 𝛿)𝑑C)

,

then the dominant strategy for a rational server is not to tamper with
the file.

Concrete instantiations. In summary, our framework can be ap-

plied to general PoS protocols as follows: (1) use our general PoS-to-

APoS transformation to obtain the corresponding APoS protocol;

(2) augment the resulting APoS protocol with an ALA; (3) set con-

crete deterrence factors according to our theorems. We present

applications of our framework to the PoS of Juels and Kaliski [19],

Ateniese et al. [6] and Shacham and Waters [21] in Appendix C.
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8 CONCLUSIONS AND FUTUREWORK
We introduced the notion of an ALA and showed how to apply

it to non-trivial two-party protocols including 2PC and PoS. We

showed that ALA-enhanced protocols can both enforce deterrence

and be more efficient than previous protocols. Our work motivates

new and interesting directions for future exploration. The most

immediate is to design ALAs for other two-party protocols like

zero-knowledge proofs and verifiable computation. Also, extending

our framework to multi-party protocols, including to secure multi-

party computation, would be interesting and non-trivial since the

resulting CIGs would be substantially more complex to define and

analyze. Another interesting direction would be to design and study

new and more complex kinds of ALAs, for example, using tech-

niques from financial engineering (i.e., stocks, derivatives etc.) and

microeconomics (e.g., contract theory). Yet another interesting, but

orthogonal direction, would be to study how to set the parameters

of the ALA for different application settings, depending on the the

parties involved in the secure protocol.
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A THE POS TO APOS TRANSFORMATION
Theorem A.1. If PoS is sound, Sig is existentially unforgeable and

Hash is collision-resistant with security parameter 𝑘 , then APoS as
described in Figure 7 is (Y, 𝛼, 𝛿)-secure where Y, 𝛼 , and 𝛿 are negligible
in 𝑘 .

Proof. The soundness of APoS follows directly from the sound-

ness of PoS so we focus here on auditability.

To show accountability, we show that if there exists a PPT ad-

versary A and a file 𝑓𝑓𝑓 such that

Pr

[
AccntA,𝑓𝑓𝑓 (𝑘) = 1

]
= Y(𝑘),

for a non-negligible function Y(𝑘), then there exists a PPT adver-

sary F such that Pr

[
ForgeF (𝑘)

]
= Y1(𝑘) or Pr

[
CollF (𝑘)

]
= Y2(𝑘),

where Y1 and Y2 are non-negligible in 𝑘 .

Given hash key 𝑤 and access to a signing oracle Sign(sk, ·), F
starts by computing (sk, pk)← PoS.Gen(1

𝑘
), (skS, vkS)← Sig.Gen(1

𝑘
)

and setting stJ = vkS, srk = (pk, skS, vk,𝑤 ). It then simulatesA and
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Let PoS = (Gen, Encode,Chall, Prove,Vrfy) be a publicly-verifiable proof of storage, Sig = (Gen, Sign,Vrfy) be a signature scheme and Hash = (Gen,Hash)

be a hash function family. Consider the auditable proof of storage APoS = (Gen,Π,Chall, Prove,Vrfy,Audit) defined as follows:

• Gen(1
𝑘

):

(1) compute (sk, pk)← PoS.Gen(1
𝑘

);

(2) compute 𝑤
$← Hash.Gen(1

𝑘
);

(3) compute (sk𝐶 , vkC)← Sig.Gen(1
𝑘

) and (sk𝑆 , vkS)← Sig.Gen(1
𝑘

);

(4) output st𝐽 = vkS, clk = (clpk, clsk) = ((pk, vkC, 𝑤), (sk, skC)) and srk = (srpk, srsk) = ((pk, vkS), (skS, 𝑤))

• Π((clk, 𝑓𝑓𝑓 ); srk) :
(1) the client:

(a) computes (𝑒𝑒𝑒, st)← PoS.Encode(sk, 𝑓𝑓𝑓 );

(b) computes ℎ ← Hash(𝑤,𝑒𝑒𝑒);

(c) computes 𝜎C ← Sign(sk𝐶 , ℎ);

(d) sends 𝑒𝑒𝑒 and 𝜏 = (ℎ, 𝜎C) to the server;

(2) the server:

(a) if ℎ = Hash(𝑤,𝑒𝑒𝑒)

(i) computes 𝜎S ← Sign(skS, ℎ);

(ii) sends rec = (ℎ, 𝜎C, 𝜎S) to the client

(b) else outputs ⊥ and aborts;

(3) the client:

(a) if Vrfy(vkS, ℎ, 𝜎S) = 1 outputs rec otherwise outputs ⊥;
• Chall(clpk, st): output ch← PoS.Chall(pk, st);
• Prove(srk,𝑒𝑒𝑒, ch): output 𝜋 ← PoS.Prove(pk,𝑒𝑒𝑒, ch);

• Vrfy(clk, st, ch, 𝜋 ): output 𝑏 ← PoS.Vrfy(pk, st, ch, 𝜋 );

• Audit(st𝐽 , rec∗,𝑒𝑒𝑒∗):
(1) parse rec∗ as (rec1, rec2, rec3) i.e. (ℎ, 𝜎C, 𝜎S);

(2) compute 𝑏1 ← Sig.Vrfy(vkC, ℎ, rec2);

(3) compute 𝑏2 ← Sig.Vrfy(vkS, ℎ, rec3);

(4) if ℎ = Hash(𝑤,𝑒𝑒𝑒∗) set 𝑏3 = 1 else set 𝑏3 = 0;

(5) if 𝑏1 = 1 ∧ 𝑏2 = 1 ∧ 𝑏3 = 1 output 0

(6) if 𝑏1 = 1 ∧ 𝑏2 = 1 ∧ 𝑏3 = 0 output 1

(7) otherwise output 0.

Figure 7: A PoS-to-APoS transformation.

executes ((stC, rec), 𝑒𝑒𝑒) ← ΠA,S ((clk, 𝑓𝑓𝑓 ); srk) playing the role of

the client C. During this execution, F generates the signature 𝜎S
by querying its Sign oracle on ℎ. It then sends 𝜏 = (ℎ, 𝜎C) to A
and records (ℎ, 𝜎C) as a pair queried to the Sign oracle. A sends

back rec∗ = (ℎ∗, 𝜎∗C, 𝜎
∗
S ), then F aborts unless ℎ∗ = Hash(𝑤,𝑒𝑒𝑒) and

the signatures verify. If the client signature verifies but (ℎ∗, 𝜎∗C)

has not been queried to the oracle, F produces this as a forgery

and terminates the experiment. Notice that A’s view up to this

point when simulated by F is distributed exactly as its view dur-

ing an AccntA,𝑓𝑓𝑓 (𝑘) experiment. If the experiment has not been

terminated by F , then A’s view is still consistent and the receipt

rec = (ℎ, 𝜎𝐶 , 𝜎𝑆 ) is produced honestly. Then by our initial assump-

tion and the definition of the Accnt experiment, this implies that

Pr

[
Audit(stJ, rec, 𝑒𝑒𝑒

∗
) = 0 ∧ 𝑒𝑒𝑒 ̸= 𝑒𝑒𝑒∗

]
≥ Y(𝑘).

But note that Audit(stJ, rec, 𝑒𝑒𝑒∗) outputs 0 if and only if ℎ is a valid

hash of 𝑒𝑒𝑒∗. Then F produces (𝑒𝑒𝑒,𝑒𝑒𝑒∗) as the hash collision. Since the

total probability of A winning is non-negligible it follows that it

either produces a forged signature in the receipt rec with some

Y1(𝑘) or an 𝑒𝑒𝑒∗ with the same hash value as 𝑒𝑒𝑒 with Y2(𝑘) where Y1, Y2

are non-negligible in 𝑘 . But since Sig is existentially unforgeable

and Hash is collision-resistant we have a contradiction. Hence we

know that

Pr

[
AccntA,𝑓𝑓𝑓 (𝑘) = 1

]
≤ 𝛼(𝑘),

where 𝛼(𝑘) is negligible. Towards showing defamation-freeness, we

show that if there exists a PPT adversary A and a file 𝑓𝑓𝑓 such that

Pr

[
Defame-FreeA,𝑓𝑓𝑓 (𝑘) = 1

]
= Y(𝑘),

for a non-negligible function Y(𝑘), then there exists a PPT adversary

F such that Pr

[
ForgeF (𝑘)

]
= Y(𝑘).

Given vk and access to a signing oracle Sign(sk, ·), F starts

by computing (sk, pk) ← PoS.Gen(1
𝑘

), 𝑤 ← Hash.Gen(1
𝑘

) and

(skC, vkC)← Sig.Gen(1
𝑘

) and setting stJ = vk and clk = (sk, pk, skC,
vkC,𝑤 ). It then simulatesA and executes ((stC, rec), 𝑒𝑒𝑒) ← ΠA,S ((clk,
𝑓𝑓𝑓 ); srk) playing the role of the server S. During this execution, F
generates the signature 𝜎S by querying its Sign oracle on ℎ. When

the execution finishes andA outputs rec∗ = (ℎ∗, 𝜎∗C, 𝜎
∗
S ), F outputs

the pair (ℎ∗, 𝜎∗S ) as its forgery. Notice thatA’s view when simulated

by F is distributed exactly as its view during anDefame-FreeA,𝑓𝑓𝑓 (𝑘)

experiment. By our initial assumption and the definition of the

Defame-Free experiment, this implies that

Pr

[
Audit(stJ, rec

∗, 𝑒𝑒𝑒) = 1

]
≥ Y(𝑘).

But note that Audit(stJ, rec∗, 𝑒𝑒𝑒) outputs 1 if and only if 𝜎∗S is a valid

signature on ℎ∗ and if Hash(𝑤,𝑒𝑒𝑒) ̸= ℎ∗. Since F only queries its

Sign oracle on Hash(𝑤,𝑒𝑒𝑒) (if ℎ ̸= Hash(𝑤,𝑒𝑒𝑒) it aborts), it follows

that (ℎ∗, 𝜎∗S ) is a new and valid message/signature pair. This is a

contradiction to the existential unforgeability of Sig. Therefore we



have

Pr

[
Defame-FreeA,𝑓𝑓𝑓 (𝑘) = 1

]
≤ 𝛿(𝑘),

where 𝛿(𝑘) is negligible.

B CONCRETE IMPROVEMENTS FOR PVC
PROTOCOLS

In this section, we apply our framework of Section 5 to three con-

crete PVC protocols to achieve two kinds of improvements: (1)

setting concrete deterrence factors; and (2) improving efficiency.

The Hong et al. protocol [18]. The most efficient PVC protocol is

by Hong et al. [18]. Its deterrence factor is Y = 1 − (1/_), where _

is the number of garbled circuits generated by the garbler so the

smallest deterrence factor that can be achieved is 1/2 (with two cir-

cuits). Also, it achieves negligible accountability ` and defamation-

freeness𝜙 . For concreteness, we assume that the security parameter

𝑘 is set such that ` and 𝜙 are at most 1/64 qnd that 𝑢𝑖G ≤ $100,

𝑢𝑜G ≥ $50 and𝑢𝑤E ≤ $100. By Lemmas 5.1 and 5.2, we can incentivize

honest behavior by using an ALA with damages

𝑑G ≥
𝑢𝑖G − 𝑢

𝑜
G

Y(1 − `)

= $101.60 and 𝑑E ≥
𝜙𝑑G
1 − 𝜙 = $1.61.

The Koleznikov and Malozemoff protocol [20]. Another PVC pro-

tocol was proposed by Koleznikov and Malozemoff (KM). Its de-

terrence factor is Y = (1 − 1/_)(1 − 2
−[+1

), where _ is the number

of garbled circuits and [ is the XOR-tree replication factor. The

smallest deterrence factor possible is 1/4 with _ = 2 and [ = 2

but Kolesnikov and Malozemoff set Y to 1/2. Using ALAs, we can

guarantee honest behavior even with the minimal deterrence fac-

tor Y = 1/4. As above, we assume the security parameter is set

so that ` and 𝜙 are at most 1/64 and that 𝑢𝑖G ≤ $100, 𝑢𝑜G ≥ $50

and 𝑢𝑤E ≤ $100. Again, by Lemmas 5.1 and 5.2, we can incentivize

honest behavior by using an ALA with damages

𝑑G ≥
𝑢𝑖G − 𝑢

𝑜
G

Y(1 − `)

= $203.20 and 𝑑E ≥
𝜙𝑑G
1 − 𝜙 = $3.22.

The same analysis holds for the protocol Asharov and Orlandi (AO)

since the deterrence factor is the same. Notice, however, that our

use of ALAs also improves the computation and communication

complexity of the protocols since we can use theminimal deterrence

factor. These protocols have several parameters which include the

bit-length of their underlying field 𝜏 , the length of the inputs 𝑛, and
the size of their commitments ^, the number of replicated circuits

_, and the XOR-tree replication factor a . In addition, for the KM

protocol let 𝑡 be the number of OTs and assume that 3^ > 𝜏 . Based
on the analysis of [20], the communication complexity of the KM

protocol when using signed OTs is,

𝜏 (7𝑡 + 11) + 2_^𝑡 + _^(2𝑛 + 1) + 𝜏 (13_ − 4) + _(2^(_ − 1) + 𝑛^) + log(_) + 2^ |𝐺𝐶 |,
where |𝐺𝐶 | is the number of non-XOR gates in the circuit. The

communication cost of the AO protocol with signed OTs is,

𝜏 (7a𝑛+11)+2_^a𝑛+_(2^ |𝐺𝐶 |+𝜏 )+2𝑛_(̂ +𝜏 )+𝜏 (13_−8)+_^(2(𝑛+a𝑛)(_−1)+2𝑛(_−1)+𝑛).

For ^ = 128, 𝜏 = 256 and _ = a = 3, which leads to Y = 1/2, the

KM protocol needs 3.47Mbit to compute a 128-bit AES circuit with

9100 non-XOR gates. For these same parameters, the AO protocol

requires 9.3Mbit. Using the ALA described above, however, we can

set _ = a = 2 which leads to the minimal deterrence factor of 1/4

and a communication complexity of 3.03Mbit for the KM protocol

and 5.75Mbit for the AO protocol.

C CONCRETE INSTANTIATIONS FOR POS
C.0.1 The Juels-Kaliski PoS. In the paper, Juels and Kaliski analyze

a concrete example - the file to be stored is encoded such that it

can be retrieved for upto 𝛿 = 0.01 fraction of corruption with high

probability. Sentinel blocks are then inserted such that a corruption

rate of 𝛿 = 0.005 can be detected with probability at least 0.71 [19].

The guarantee provided by their scheme is that of high enough

detection of deviation i.e. corruption of the file. We show how to

augment this scheme with an appropriate ALA and damages in

order to guarantee that a rational server will not deviate. We show

that we need fewer sentinel blocks in order to provide this stronger

guarantee due to the presence of the ALA and the damages which

come ‘for free’.

Example from Juels and Kaliski [19]. We consider a 2GB file 𝑓𝑓𝑓

with 128-bit block size and a (255, 223, 32) Reed Solomon code over

𝐺𝐹 [2
128

]. This results in a 2
27

blocks before erasure encoding and

153, 477, 870 blocks after erasure encoding. Adding 𝑠 = 1, 000, 000

sentinels, the file now has 154, 477, 870 blocks which amounts to

about 2.3GB. Extending the analysis, consider a corruption rate

of 𝛿 = 0.01 the adversary will corrupt the file beyond retrievabil-

ity with probability at most 0.089. To detect a corruption rate of

𝛿 = 0.005, they use 1000 sentinels per challenge which guaran-

tees detection with probability at least 0.71. Keeping the storage

constant we show that we can enhance the Juels-Kaliski PoS with

an ALA and guarantee that the rational server will not corrupt

the file above 𝛿 = 0.005 using only 200 sentinels per challenge.

Although the detection probability is now lower (∼ 0.23) we can

adjust the damages to get this result. We now show how to calculate

the appropriate parameters for this ALA.

Estimating server costs. First we estimate the cost incurred by the

server to execute the protocol. During the encode protocol Π, the

server needs to compute a hash, verify a signature and sign a hash.

SHA-256 is estimated to consume 100`wHperMB[13] so the energy

to hash a 2.3GB file is 2.355 × 10
−4
kwH. The cost of verifying plus

signing a 32-bit SHA-256 hash using RSA-1024 is about 350mJ

≈ 10
−7
kWh[23]. The average energy cost in in Seattle is 12 cents

per month per kWh[2] so the cost of the hash, the signature and

the verification amount to 30 × 10
−4

cents. To answer a challenge,

the server needs to return 200 blocks to the client. This amounts

to sending 200 × 128bits which is 25.6kB back to the client. The

AWS egress prices (i.e., the cost to move data out of a cloud AWS)

is 0.09$ per GB[4], so sending the proof will cost about 21.6 × 10
−5

cents. So the total cost for the server is ∼ 32 × 10
−4

cents.

Setting the parameters of the ALA. From this analysis, we should

set the server fee to 𝜑 ≥ 𝑐S/Y = 32 × 10
−4/0.77 ≈ 0.004 cents. Next,

we have to ensure that 𝜑 + (1 − 𝛼)𝑑S ≥
𝑔S

1−Y . where 𝛼 is the upper

bound on the accountability of the APoS, 𝑑S are the damages the

server must pay if caught cheating and 𝑔S is the gain the server

incurs by losing the file. To estimate 𝑔S we use the price of storing
2.3GB for a year on Amazon S3 which is $0.6348 ≈ $0.7[1]. Using

RSA-1024 and SHA-256 implies that 𝛿 and 𝛼 are approximately 0.

So if we set the server damages in the ALA to be 𝑑S = $4 then the

condition above is satisfied. For the equilibrium to exist, we also



need the server’s probability of violation to be bounded above as

𝑡S ≤ −(𝛿𝑑S−(1−𝛿)𝑑C)

Y((1−𝛼 )𝑑S−𝛼𝑑C)−(𝛿𝑑S−(1−𝛿)𝑑C)
≈ 𝑑C

Y𝑑S+𝑑C
.

To get the guarantee for 𝑡S ≤ 0.75 we need the client damages in

the dual ALA to be 𝑑C = $10. We can always adjust the bound for 𝑡S
to be arbitrarily close to 1 by increasing the client’s damages. Finally

we need both 𝛼 ≤ 𝑑S/(𝑑S + 𝑑C) = 2/7, and 𝛿 ≤ 𝑑C/(𝑑S + 𝑑C) = 5/7

which is also satisfied. Then by using an ALA with damages of

$4 and a dual ALA with damages of $10, we can guarantee that

a rational server and a framing client will behave honestly using

only 200 sentinels per challenge as opposed to the 1000 sentinels

per challenge needed originally. This will also allow us to run five

times as many challenges. We note that we could trade off storage

or the parameters of the error-correcting code similarly, as long as

we ensure that the conditions for Theorem 7.4 hold.

C.0.2 The Ateniese et al. PoS. We now apply our framework to

the publicly-verifiable proofs of data possession S-PDP by Ateniese

et al [6]. In their paper they show that for a file of 𝑛 blocks where

the server corrupts 𝑡 of them and the client asks for 𝑐 blocks per

challenge then the probability that the client detects this corruption

𝑝 is given by: 1 −
(
𝑛−𝑡
𝑛

)𝑐 ≤ 𝑝 ≤ 1 −
(
𝑛−𝑐+1−𝑡
𝑛−𝑐+1

)𝑐
.

They then say that when 𝑡 = 1% of 𝑛 the client must ask for

𝑐 = 460, 𝑐 = 300 blocks in order to achieve 𝑝 of 99% and 95%

respectively [6]. In our setting the above relationship implies for

the soundness error Y which is 1 − 𝑝:
(
𝑛−𝑡
𝑛

)𝑐 ≥ Y ≥
(
𝑛−𝑐+1−𝑡
𝑛−𝑐+1

)𝑐
.

Nowwe show that we can provide the guarantee that the rational

server will not deviate with 𝑐 = 50 blocks and 𝑑S, 𝑑C equal to $2, $7

respectively. In order to calculate the parameters we choose a 2GB

file and assume that with tags it expands to at most 2.5GB. Let

each block be 4KB as per the optimal size in the paper. Then 𝑛 =

524288, 𝑡 = 5243 and from the abovewe have: 0.60499 ≥ Y ≥ 0.60497

Estimating server costs. First we estimate the cost incurred by the

server to execute the protocol. During the encode protocol Π, the

server needs to compute a hash, verify a signature and sign a hash.

SHA-256 is estimated to consume 100`wHperMB[13] so the energy

to hash a 2.5GB file is 2.56 × 10
−4
kwH. The cost of verifying plus

signing a 32-bit SHA-256 hash using RSA-1024 is about 350mJ

≈ 10
−7
kWh[23]. The average energy cost in in Seattle is 12 cents

per month per kWh[2] so the cost of the hash, the signature and

the verification amount to 30.7× 10
−4

cents. To answer a challenge

in the publicly-verifiable scheme, the server needs to return ∼ 1

block. This amounts to sending at most 5kB back to the client. The

AWS egress prices (i.e., the cost to move data out of a cloud AWS)

is 0.09$ per GB[4], so sending the proof will cost about 4.29 × 10
−5

cents. So the total cost for the server is ∼ 32 × 10
−4

cents.

Setting the parameters of the ALA. From this analysis, we should

set the server fee to 𝜑 ≥ 𝑐S/Y = 32 × 10
−4/0.61 ≈ 0.005 cents. Next,

we have to ensure that 𝜑 + (1 − 𝛼)𝑑S ≥
𝑔S

1−Y , where 𝛼 is the upper

bound on the accountability of the APoS, 𝑑S are the damages the

server must pay if caught cheating and 𝑔S is the gain the server

incurs by losing the file. To estimate 𝑔S we use the price of storing
2.5GB for a year on Amazon S3 which is $0.69 ≈ $0.7[1]. Using

RSA-1024 and SHA-256 implies that 𝛿 and 𝛼 are approximately 0.

So if we set the server damages in the ALA to be 𝑑S = $2 then the

condition above is satisfied. For the equilibrium to exist, we also

need the server’s probability of violation to be bounded above as

𝑡S ≤ −(𝛿𝑑S−(1−𝛿)𝑑C)

Y((1−𝛼 )𝑑S−𝛼𝑑C)−(𝛿𝑑S−(1−𝛿)𝑑C)
≈ 𝑑C

Y𝑑S+𝑑C
.

To get the guarantee for 𝑡S ≤ 0.85 we need the client damages in

the dual ALA to be 𝑑C = $7. We can always adjust the bound for 𝑡S
to be arbitrarily close to 1 by increasing the client’s damages. Finally

we need both 𝛼 ≤ 𝑑S/(𝑑S + 𝑑C) = 2/9, and 𝛿 ≤ 𝑑C/(𝑑S + 𝑑C) = 7/9

which is also satisfied. We then see that by using an ALA with

damages of $2 and a dual ALA with damages of $7, we guarantee

that a rational server and a framing client will behave honestly

using only 50 blocks per challenge as opposed to the ∼ 300 blocks

needed to guarantee a reasonable chance of detection. We have

hence reduced the overall computation required for the server and

have shown a stronger guarantee by adding the ALA.

C.0.3 The Shacham-Waters PoS. We consider the example param-

eterization mentioned in the paper [21]. They take the security

parameter 𝑘 = 80 in order to have a small enough soundness er-

ror Y. We assume their (negligible) soundness error is 1/2𝑘 1. With

our framework we can assume a much smaller security parameter

while guaranteeing that the rational server will not cheat. Let the

security parameter 𝑘 = 10. Then by our simplification the sound-

ness Y = 1/1024 ∼ 0.001. We assume a 2.5GB file as in the previous

example and the communication costs are similar. From the above

analysis the server’s cost of participation is ∼ 32 × 10
−4

cents.

Setting the parameters of the ALA. From this analysis, we should

set the server fee to 𝜑 ≥ 𝑐S/Y = 32 × 10
−4/0.001 ≈ 3.2 cents. Next,

we have to ensure that 𝜑 + (1 − 𝛼)𝑑S ≥
𝑔S

1−Y , where 𝛼 is the upper

bound on the accountability of the APoS, 𝑑S are the damages the

server must pay if caught cheating and 𝑔S is the gain the server

incurs by losing the file. To estimate 𝑔S we use the price of storing
2.5GB for a year on Amazon S3 which is $0.69 ≈ $0.7[1]. Using

RSA-1024 and SHA-256 implies that 𝛿 and 𝛼 are approximately 0.

So if we set the server damages in the ALA to be 𝑑S = $1 then

the condition above is satisfied. For the equilibrium to exist, we

also need that the server’s probability of violation is bounded as

𝑡S ≤ −(𝛿𝑑S−(1−𝛿)𝑑C)

Y((1−𝛼 )𝑑S−𝛼𝑑C)−(𝛿𝑑S−(1−𝛿)𝑑C)
≈ 𝑑C

Y𝑑S+𝑑C
, which is 𝑡S ≤ 0.999 for

the client damages in the dual ALA 𝑑C = $1. Finally we need both

𝛼 ≤ 𝑑S/(𝑑S + 𝑑C) = 1/2, and 𝛿 ≤ 𝑑C/(𝑑S + 𝑑C) = 1/2 which is also

satisfied. Then by using an ALA and a dual ALA with damages of

$1, we can guarantee that a rational server and a framing client will

behave honestly using only 𝑘 = 10. From the paper this now implies

that the prime 𝑝 is 20 bits (down from 160), the challenge space is𝐵 =

{0, 1}10
since the challenge length is only 10 elements as opposed to

80 in their example parameterization. In the paper, they attempt to

reduce this challenge size by sending a pseudoranodom seed instead

to the server. The server evaluates the pseudorandom function

at specific points (usually a counter) to generate the challenge.

However, even with the modification; our framework reduces the

amount of computation overall for both the server and the client

while providing a stronger guarantee with the addition of the ALA.

1
We note that this is in order to have a concrete value for the example, and any other

negligible (or even non-negligible) function can be used similarly.
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