
Proceedings on Privacy Enhancing Technologies ..; .. (..):1–22

Megumi Ando* and Marilyn George

On the Cost of Suppressing Volume for
Encrypted Multi-maps
Abstract: Structured encryption (STE) schemes allow a
client to store sensitive data on a semi-trusted remote
server and query the data. STE schemes strike a balance
between privacy and efficiency by leaking some infor-
mation to the server. In particular, many STE schemes
leak the volume pattern i.e., response lengths, and the
query equality pattern i.e., if any queries are repeated.
Recently discovered leakage-abuse attacks demonstrate
that leaking the volume pattern can be unsafe; that
is, the server can reconstruct parts of the database
from this leakage. To address this leakage, Kamara and
Moataz proposed a novel multi-map encryption scheme,
AVLH, that hides query volumes by padding responses
with parts of other responses (Eurocrypt 2019). AVLH
was shown to be more storage-efficient than the naive
approach to pad responses with dummy values to reach
the maximum response length. Subsequently, Patel et
al. provided an even more efficient volume-hiding multi-
map scheme, dprfMM (CCS 2019). Despite these ad-
vances, the costs of fully suppressing query volumes are
still unclear. In this paper, we provide the first lower
bounds on STE schemes for multi-maps that leak at
most the query equality pattern. Surprisingly, we find
that in many cases, such STE schemes cannot be more
storage-efficient than naively padding to the maximum
length.
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1 Introduction
Structured encryption (STE) is a cryptographic prim-
itive that enables a client to both store and efficiently
query large and confidential data on an external un-
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trusted server. Confidential data can also be stored
and queried using cryptographic primitives such as
fully-homomorphic encryption (FHE) or oblivious RAM
(ORAM); however, these solutions often incur high com-
putational and/or communication costs. STE allows for
a flexible trade-off between the level of security offered,
the types of queries supported, and the practical effi-
ciency of the system. This trade-off is possible because
STE schemes allow for the quantification of “leakage”
which, roughly, is any meaningful information the un-
trusted server learns about either the input data or the
queries issued by the client.

For example, the multi-map is a commonly-used
data structure which associates a label to a tuple of
values. When a multi-map is queried for a label, the
corresponding tuple of values is returned. Encrypted
multi-maps can be used to build wide-ranging function-
ality such as search over encrypted document collections
and SQL queries over encrypted relational databases,
e.g., [10, 33], examples from [30].

While the server cannot directly decrypt an en-
crypted multi-map, it can observe all the actions per-
formed on the encrypted structure, and therefore in-
fer some information through the leakage of the STE
scheme that could include: (i) the volume pattern (the
response lengths; for a multi-map, the lengths of the tu-
ples) and (ii) the query equality pattern (repetitions in
queries, also referred to as the search pattern). These
two types of leakages (i) and (ii) are common in multi-
map encryption schemes and were, until recently, con-
sidered reasonable and (efficiently) unavoidable. How-
ever, a recent line of work on leakage attacks has demon-
strated that these leakages could be used to compromise
security, e.g., see [5, 11, 14, 16, 19–21, 23, 26, 28, 32].

Leakage attacks. Leakage-abuse attacks, first de-
fined by Cash, Grubbs, Perry, and Ristenpart, are a
class of attacks that exploit a specific leakage profile
rather than a specific STE scheme [6]. For these attacks
to work, it is often assumed that the adversary knows
the query distribution from which the queries are sam-
pled but not the queries in plaintext (e.g., [19, 23]).
Volumetric attacks are a kind of leakage-abuse attack
in which the adversarial server reconstructs the queries
and/or the database by computing on the volume pat-
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tern (see e.g., [3, 6, 19]). A recent example is a paper
by Kornaropoulos, Papamanthou, and Tamassia that
demonstrates a new kind of attack; here, the adversary
does not even know the query distribution a priori [22].
The growing number of attacks and prevalence of the
leakage patterns prompted a new line of work looking
to reduce the leakage of STE schemes.

Leakage suppression. All known attacks on STE
schemes use either the query equality pattern or the
volume pattern (included in the larger leakage profile
known as the access pattern), or a combination of both.
As such, given that these patterns occur frequently in
STE schemes, there has been interest in trying to hide,
or suppress, one or both of these leakage patterns.

In order to suppress the query equality, one could
use ORAM or ORAM-like techniques as proposed
by query equality suppression frameworks for multi-
maps [12, 18]. However, ORAM techniques are subject
to existing logarithmic lower bounds on communication
complexity [4, 13, 24]. Similarly, for encrypted multi-
maps, Patel, Persiano, and Yeo proved that there must
be a logarithmic overhead to suppress the decoupled key-
equality pattern, which includes the query equality pat-
tern [29]. Additionally, ORAM techniques also require
the modification of the server storage at query time,
which prevents efficiency enhancements such as paral-
lel query processing. Despite the large body of work in
query equality suppression, to the best of our knowl-
edge, only one existing attack by Liu et al. [25] makes
use of primarily the query equality pattern, and their
attack is only effective for certain query distributions.

On the other hand, the overwhelming majority of
attacks on STE schemes exploit the access pattern leak-
age, which consists of the values returned by the server
for a query, e.g., see [5, 11, 14, 16, 19, 20]. In particular,
these attacks rely on two components of the access pat-
tern leakage: (i) the intersections between queried tu-
ples and (ii) the query volumes. It follows that suppress-
ing these patterns would make existing attacks signifi-
cantly harder, or even impossible. Any response-hiding
STE scheme in the standard frameworks [1, 2], i.e., a
scheme in which all the responses from the server are en-
crypted, would hide (i). In contrast, hiding (ii) is not as
simple, and naive solutions are prohibitively expensive.
This challenge of both hiding query volumes while also
achieving efficient STE schemes motivated the study of
techniques referred to in the literature as volume-hiding.

Volume-hiding. Kamara and Moataz first pro-
posed hiding the volume pattern for STE schemes [17].
Their multi-map scheme, AVLH, suppressed query vol-
umes by padding the encrypted responses using other

encrypted responses. Patel, Persiano, Yeo, and Yung
later proposed a formal definition of volume-hiding,
as well as a more efficient volume-hiding construction,
known as dprfMM [30]. Although there has been sig-
nificant interest in designing volume-hiding techniques,
there has not yet been a formal study of the costs of
hiding the volume pattern.

We make the case that the volume pattern is the
most crucial of the common leakage patterns, and that it
warrants an individual study. With this motivation, our
paper investigates the following question: What is the
cost of leaking “minimally” i.e., only the query equality
pattern, while suppressing the query volumes entirely?

1.1 Our Contributions

We consider a multi-map encryption scheme Σ that sup-
ports label queries to the encrypted data structure.

In this paper, Σ always consists of four algorithms:
Setup, Token, Query, and Resolve. During setup, the
client runs the algorithm Setup on the multi-map MM;
this generates an encrypted data structure EMM for
storage on the server-side. After setup, the client can
query the encrypted data structure by sending tokens
(i.e., encrypted queries) to the server; the client runs
the algorithm Token to determine the token correspond-
ing to each (plaintext) query. To respond to a to-
ken/query τ , the server runs the algorithm Query on
τ and the encrypted data structure EMM; this produces
an encrypted response. The client can then decrypt this
response by running the algorithm Resolve.

Thus, our contributions are for static, response-
hiding, non-interactive, and non-self-adjusting struc-
tured encryption schemes. By static, we mean that the
scheme does not support any functionality for updat-
ing the data structure. The scheme is non-interactive if
the server can compute the encrypted response from the
search token without further interacting with the client.
It is non-self-adjusting if the encrypted structure does
not need to be modified in the server storage after ini-
tial setup, which is appropriate when studying the cost
of suppressing the volume pattern without the need to
use ORAM-like techniques.

Consistent with prior work on all known static,
response-hiding, non-interactive, non-self-adjusting
multi-map encryption schemes (see, e.g., the pad-and-
split [2] and statistical independence frameworks [1]
for multi-map STE schemes), we assume that the en-
crypted multi-map EMM output by Setup contains a set
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of encrypted values, and that each encrypted response
can be thought of as a subset of EMM.

Our results pertain to the total size of the encrypted
data structure, or the number of values in the encrypted
multi-map (i.e., storage), given some restrictions on the
number of values in an encrypted response (i.e., read-
efficiency).

1.1.1 Minimally-leaking schemes

We chose to take a game-based approach since this
allowed us to make succinct arguments for the lower
bounds presented in this paper. To that end, we first
provide a simple game-based definition that captures
what it means for an encrypted multi-map scheme to be
“minimally leaking.” Our notion is equivalent to stan-
dard (LS,LQ)-security where the setup leakage LS out-
puts the size (i.e., the total number of values in the
multi-map) and the maximum response length, and the
query leakage LQ outputs the query equality pattern.
The proof of equivalence follows from directly adapt-
ing the proof by CGKO [10] that indistinguishability
and semantic security for searchable symmetric encryp-
tion (SSE) schemes are equivalent. See Definition 3 in
Section 3 for the formal definition of minimally-leaking,
and Appendix A for the formal definitions of (LS,LQ)-
security and simulation-based minimally-leaking.

As noted in [18, 30], if Σ is a minimally-leaking en-
crypted multi-map scheme, then the length of each en-
crypted response produced by Σ must be at least the
maximum response length t. (If there existed a query
with response length < t, the adversary would be able
to exclude any multi-map such that the response to that
query is of max length.) We refer to Σ as being “opti-
mally read-efficient” if each encrypted response length
is exactly t. It can be shown that the storage of any
optimally read-efficient encrypted multi-map is at least
mt, where m is the number of labels in the multi-map.
(See Theorem 7 in Appendix B for a formal argument.)
This implies that the naive approach that pads each
response with as many information-less “dummy” val-
ues as needed for the padded length to equal t, is opti-
mally storage-efficient among all optimally read-efficient
strategies.

One natural question is, “Can we do better than this
pad-to-max approach?” If we remove the restriction that
the scheme is optimally read-efficient (perhaps the read-
efficiency is an expected small constant factor worse),
could we save on storage?

One way to reduce storage is to use parts of other
responses instead of always padding with information-
less dummy values [17]. That is, to extend the length
of the response c′1 = {c1,1, . . . , c1,ℓ1<t} to the maximum
length t, we can append values from other responses
to c′1. For example, we can obtain an extension of c′1,
c1 = {c1,1, . . . , c1,ℓ1 , c2,1, . . . , c2,t−ℓ1}, by using values
from another response c′2 = {c2,1, . . . , c2,ℓ2≥t−ℓ1}. In this
example, the values c2,1, . . . , c2,t−ℓ1 show up in both c1
and c2: in the context of c1, they are “real” values, and
in the context of c2, they are “non-real”. To avoid con-
fusion, we will always refer to the method of reusing en-
crypted responses as “overlapping”, and to the method
of using information-less dummies as “padding”.

Randomly-overlapping STE schemes. For an
STE scheme to be of practical use, it should be both
easy to implement and easy to analyze. To that end, for
studying whether overlapping can reduce the storage
of minimally-leaking schemes, we focus on the scenario
where the set of non-real values is chosen independently
based only on the unencrypted response (and the ex-
pected length of each encrypted response is t+ ≥ t);
this scenario captures a large class of STE schemes that
are simple to implement and analyze. In fact, our re-
sult is for the slightly more general case where the sets
of non-real values are pair-wise independent, which we
call “randomly overlapping,” see Definition 9. In partic-
ular, we do not consider techniques that assign non-real
values based on other properties: e.g., correlations be-
tween the frequencies of response lengths. In large part,
this is because such techniques require a lot of care to
ensure that the volume pattern remains hidden.

For our first result, we show that if Σ is randomly-
overlapping, even using an arbitrarily large (but poly-
nomially bounded) number of information-less dummy
values, it still cannot be minimally-leaking:

Theorem 1. If Σ is a randomly-overlapping encrypted
multi-map scheme, then Σ is not minimally-leaking.

We show this to be the case by recasting the problem
of randomly selecting encrypted values for overlapping
as a “sampling marbles from bags” problem.

One implication of Theorem 1 is that modifying the
Patel et al.’s dprfMM so that it becomes “stash-less”
would break the scheme’s security; without some data
in the stash, the scheme would be randomly-overlapping
and, therefore, not minimally-leaking. Finally, we ana-
lyze Kamara and Moataz’s AVLH scheme. While AVLH
is not randomly-overlapping, surprisingly, we found that
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it is not volume-hiding (as defined by Patel et al.) and,
therefore, not minimally-leaking either:

Theorem 2. AVLH [17] is not minimally-leaking.

1.1.2 Sampled Minimally-leaking schemes

The setting in papers attacking STE papers is differ-
ent from the setting in the standard security definition:
the attacker mounting a leakage-abuse attack operates
without knowing the unencrypted queries, whereas the
adversary in the security game chooses the queries. In
this paper, we are also interested in determining the
minimum costs for achieving the security notion that
is analogous to minimally-leaking in the weaker model.
This model, which we refer to as the “sampled set-
ting,” has the challenger sampling a sequence of queries
uniformly at random from a fixed query distribution.
Then “sampled minimally-leaking” is equivalent to the
simulation-based security that leaks at most the size
and the maximum response length in the sampled set-
ting. We refer the reader to Section 3 and Appendix A
for formal definitions.

In the sampled setting, when the adversary observes
that some responses are shorter than the maximum re-
sponse length, this does not immediately exclude some
multi-maps. From this, it seems plausible that an en-
crypted multi-map encryption scheme that satisfies the
weaker sampled definition can be more efficient than a
fully secure one.

As explained earlier in Section 1.1.1, in the stan-
dard security setting where the adversary chooses the
queries, each response must contain at least t encrypted
values, where t is the maximum response length. In
this paper, we show that the analogous lower bound
in the sampled security setting is less restrictive: for all
i, the ith shortest response length |Ei| must be at least
min(

⌊
N

m−i+1
⌋
, t), where N is the number of values in the

multi-map, and m is the number of queries. Note that
for i < J

def= m−
⌊

N
t

⌋
+1,

⌊
N

m−i+1
⌋

is strictly smaller than
t. Let the read-efficiency curve be defined as follows:

RE(i) def=

{⌊
N

m−i+1
⌋
, for 1 ≤ i < J

t, for J ≤ i ≤ m;

Intuitively, we can think of RE(·) as the curve that
tightly bounds all possible multi-maps with the param-
eters N , m, and t.

Theorem 3. With overwhelming probability, for every
i ∈ [m], the length of the ith shortest encrypted response,
denoted |Ei|, is at least RE(i).

This result is tight since padding up to the read-
efficiency curve RE(·) is a valid sampled minimally-
leaking scheme. Thus, in the context of being sampled
minimally-leaking, a multi-map encryption scheme is
optimally read-efficient if for all i, |Ei| = RE(i) with
probability 1.

Balanced STE schemes. In the standard set-
ting, the optimal storage among optimally read-efficient
multi-map schemes is mt; see Theorem 7 in Appendix B.
For our final result, we present a similar result to The-
orem 7 in the sampled setting. In particular, we derive
the optimal storage among a class of optimally read-
efficient multi-map schemes, which we call “balanced.”
Below, we first define this class of schemes.

Let the range [1, 2, . . . , m] be the indices of the m

queries, i.e., the x-axis for the read-efficiency curve. We
can partition the range into two parts: the “lefthand-
side” (indices LHS = [1, 2, . . . , J−1]) and the “righthand-
side” (indices RHS = [J, J + 1, . . . , m]). (See Figure 1
below for a pictorial depiction of lefthand-side and
righthand-side.) In Lemma 1, we show that any non-
real value in the righthand-side must be “covered by” a
(real or information-less) value from the lefthand-side;
that is, for every i ∈ RHS, for each non-real value e

for the ith shortest response Ei, there exists j ∈ LHS
such that e is a real value only for Ej , or else e is an
information-less value.

i

RE(i)

1 2 3 4 5 6 7 8 94 6 7

2
3
4

6

LHS RHS

Fig. 1. The read-efficiency curve for N = 18, m = 9, t = 6. The
indices in I = {1, 4, 6, 7} are considered “steps” since the value
of the read-efficiency curve increases at each of the step indices.
The indices LHS = {1, . . . , 7} are those in the lefthand-side, and
the indices RHS = {8, 9} are those in the righthand-side.

Consider the following two extremes: let MM1 be
the multi-map with as many “short” responses (i.e.,
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of length |E1|) as possible, and let MM2 be a multi-
map with the maximum number of “long” responses
(i.e., of length |Em| = t). If Σ is sampled minimally-
leaking, then the observable properties of the encrypted
data structure EMM1 produced by running Setup on
MM1 is indistinguishable from those of EMM2 pro-
duced from MM2. These include the “overlap” between
the lefthand-side and the righthand-side of the read-
efficiency curve (i.e., the encrypted values that show
up in both the shorter encrypted responses E1, . . . , EJ−1
and the longer ones EJ , . . . , Em). If Σ is optimally read-
efficient, then from Lemma 1, it follows that the non-
real values in the righthand-side of EMM1 must be cov-
ered by real/information-less values in the lefthand-side.
Moreover, since the overlap between the lefthand-side
and the righthand-side is observable, it follows that the
same overlap must exist when the multi-map is MM2
instead.

By construction, this implies that in EMM2, the real
values in the righthand-side must cover values in the
lefthand-side. Therefore the following is a natural idea:
if there are more values on one side of the read-efficiency
curve, then the extra values are used to cover the other
side. We say that an encrypted multi-map scheme is
“balanced” if this is always the case; that is, a similar
restriction as Lemma 1 holds in the other direction: ev-
ery non-real value in the lefthand-side must be covered
by a (real or information-less) value from the righthand-
side. Our bound is as follows:

Theorem 4. Let Σ be balanced, and let
∑

i∈RHS RE(i) =
N where N is the size of the multi-map. With over-
whelming probability, Σ’s setup algorithm adds at least∑

i∈LHS RE(i)−N dummy values to the encrypted struc-
ture.

In Section 5.3, we show experimentally that our bound
in Theorem 4 essentially matches the scheme that
naively pads up to the read-efficiency curve. This is fur-
ther evidence that the class of balanced STE schemes is
sufficiently general.

1.2 Related Work

Our work continues the line of investigation that inves-
tigates the security-efficiency trade-offs of STE schemes
for multi-maps. Previous work has investigated effi-
ciency trade-offs for multi-maps in the context of search-
able symmetric encryption (SSE), using an underlying
multi-map structure where each keyword maps to a tu-

ple of search results. Cash and Tessaro first showed that
a multi-map scheme must either pad to ω(N) in the to-
tal number of results N or have highly non-continuous
reads [7]. Later, Asharov, Segev, and Shahaf proposed
the pad-and-split framework and showed that multi-
map schemes required Ω(N log N)/ log L storage where
the locality L was the maximum number of contiguous
reads to retrieve any encrypted response [2]. Asharov,
Naor, Segev, and Shahaf also proposed a second frame-
work for SSE schemes known as the statistical inde-
pendence framework and showed that there exist SSE
schemes with both optimal storage and locality in this
framework [1]. The existing bounds assume that both
the access pattern (which includes the volumes) and the
query equality pattern are leaked. In contrast to previ-
ous work of this nature, we would like to understand
the additional efficiency costs to suppress the volume
leakage for an encrypted multi-map, while still leaking
the query equality. Our results pertain to the read ef-
ficiency and storage of schemes that leak (beyond the
dimensions of the database) at most the query equality.

2 Preliminaries
Notation. For a natural number n, [n] is the set
{1, . . . , n}. For a set Set, we denote the cardinality of
Set by |Set|, and item←$ Set is an item from Set cho-
sen uniformly at random. If Dist is a probability distri-
bution over Set, item ← Dist is an item sampled from
Set according to Dist. For an algorithm Algo, output ←
Algo(input) is the (possibly probabilistic) output from
running Algo on input.

We say that a function f : N 7→ R is negligible in the
parameter λ, written f(λ) = negl(λ), if for a sufficiently
large λ, f(λ) decays faster than any inverse polynomial
in λ. If a function f(λ) is non-negligible in the param-
eter λ, we denote this as f(λ) = nonnegl(λ). When λ

is the security parameter, an event Eλ is said to occur
with (non-)negligible probability if the probability of Eλ

can(not) be bounded above by a function negligible in
λ. An event occurs with overwhelming probability if its
complement occurs with negligible probability.

Multi-maps. Let MM be a space of possible multi-
maps, defined by a label space L = {l1, . . . , lm}. Any
multi-map MM from the space MM will contain the
same set of labels, which is fixed in advance. In par-
ticular, this means that a multi-map structure does not
need to know how to respond to queries on labels outside
of L to be correct. Each label li corresponds to a tuple of
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values represented as MM(li). The correct response to a
query for label li contains the values in MM(li). The size
of the multi-map MM, denoted |MM|, is the total num-
ber of values in MM, i.e., |MM| def=

∑
i∈{1,...,m} |MM(li)|.

3 Definitions
A structured encryption scheme [9] consists of the al-
gorithms: Setup, Token, Query, and Resolve. We describe
the syntax of these algorithms below.

Definition 1 (Structured encryption). A structured
encryption (STE) scheme Σ for the multi-map space
MM and the label space L consists of the tuple
(Setup, Token, Query, Resolve), where

– Setup is an efficient, i.e., probabilistic polynomial-
time (p.p.t.), algorithm that takes as input the se-
curity parameter 1λ and the multi-map MM ∈MM,
and outputs the key K, and the encrypted multi-map
EMM, i.e., (K, EMM)← Setup(1λ, MM).

– Token is an efficient algorithm that takes as input
the key K and a query l, and outputs a query token
τ for the label, i.e., τ ← Token(K, l).

– Query is an efficient algorithm that takes as in-
put the encrypted multi-map EMM and the token τ ,
and outputs the encrypted response c, i.e., c ←
Query(EMM, τ).

– Resolve is an efficient algorithm that takes as input
the key K, and the encrypted response c, and outputs
the decrypted response r, i.e., r ← Resolve(K, c).

There are other flavors of STE schemes: dynamic, inter-
active, self-adjusting, and/or response-revealing; as well
as schemes that require the client to hold a small stash
containing some data, but we will not consider these al-
ternatives here. An STE scheme is correct if it returns
the correct responses with overwhelming probability:

Definition 2 (Correctness). An STE scheme for the
space of multi-maps MM, and the label space L is cor-
rect if for any MM ∈ MM and sequence of queries
q1, . . . , qj ∈ L,

Pr[(K, EMM)← Setup(1λ, MM);
r1 ← Resolve(K, Query(EMM, Token(K, q1)));

...
rj ← Resolve(K, Query(EMM, Token(K, qj))) :

r1 ≡ MM(q1), . . . , rj ≡ MM(qj)] = 1− negl(λ), (1)

where “a ≡ b” means that a and b are equal up to a
permutation. The scheme is perfectly correct if for all
values λ ∈ N, the probability in (1) is 1.

3.1 Security in the standard setting

Let L = {l1, . . . , lm} be the fixed label space of the
multi-map. The adversary A is assumed to be semi-
honest; that is, we assume that A follows the encrypted
multi-map scheme’s query protocol in the role of the
server.

Formally, we define security with respect to the
following game. Let q1, . . . , qj ∈ L be a sequence
of queries to the multi-map, where each query cor-
responds to a label. The query equality pattern of
the sequence (q1, . . . , qj) is the binary matrix in-
dicating which queries are equal to each other.
The game MLGameAΣ (1λ) is parameterized by the
security parameter 1λ, the adversary A, and the
STE scheme Σ = (Setup, Token, Query, Resolve).
1. The adversary A chooses two multi-maps MM0

and MM1 of the same “dimensions” (i.e., size
and maximum response length) and sends
(MM0, MM1) to the challenger C.

2. A picks two sequences of queries,
q⃗0 = (q0,1, . . . , q0,poly(λ)) and q⃗1 =
(q1,1, . . . , q1,poly(λ)), with the same query
equality pattern and sends (q⃗0, q⃗1) to C.

3. The challenger C samples a bit b←$ {0, 1} uni-
formly at random, runs Setup(1λ, MMb), and
sends the resulting encrypted multi-map EMM
to A.

4. For each qb,i, C runs Token(K, qb,i), where K is
the key generated in step 1. C sends the tokens
(τ1, . . . , τpoly(λ)) to A.

5. Finally, A outputs a guess b′ and wins if b′ = b.

We define “minimally-leaking,” a special case of L-
security [10], as follows:

Definition 3 (Minimally-leaking). The encrypted
multi-map scheme Σ is minimally-leaking if for all p.p.t.
adversaries A, the advantage that A has in winning
MLGameAΣ (1λ) is negligible in the security parameter λ,
i.e.,

∣∣Pr
[
A wins MLGameAΣ (1λ)

]
− 1

2
∣∣ = negl(λ).

In the STE literature, security is defined with respect
to two functions, the setup leakage LS and the query
leakage LQ, which together make up the leakage profile;
see, for example, [17, 18] for a more thorough exposi-
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tion on leakage profiles. Minimally-leaking is related to
standard (LS,LQ)-security as follows:

Theorem 5. The encrypted multi-map scheme Σ is
minimally-leaking if and only if it is non-adaptively
(LS,LQ)-secure, where the setup leakage LS reveals only
the size and the maximum response length of the multi-
map, and the query leakage LQ reveals only the query
equality pattern.

The proof follows from Curtmola et al.’s proof that in-
distinguishability for SSE schemes is equivalent to se-
mantic security for SSE schemes [10].

3.2 Security in the “sampled” setting

In the standard setting, the adversary chooses a se-
quence of queries: q1, . . . , qj . In this paper, we will also
consider an alternative scenario, in which the adver-
sary does not choose the queries. Instead, the chal-
lenger samples the queries uniformly at random, i.e.,
q1, . . . , qj ←$L. This sampled security definition is in-
spired by the adversary models used in leakage attacks
on STE schemes.

Consider the following modification to
MLGameAΣ (1λ). The modification is boxed for bet-
ter readability:
The game SMLGameAΣ (1λ) is parameterized by the
security parameter 1λ, the adversary A, and the
STE scheme Σ = (Setup, Token, Query, Resolve).
1. The adversary A chooses two multi-map MM0

and MM1 of the same “dimensions” (i.e., size
and upper bound on the maximum response
length) and sends (MM0, MM1) to the chal-
lenger C.

2.
C samples q1, . . . , qpoly(λ) independently
and uniformly at random from the
query/label space L.

3. The challenger C samples a bit b←$ {0, 1} uni-
formly at random, runs Setup(1λ, MMb). C sends
the encrypted multi-map EMM to A.

4. For each qi , C runs Token(K, qi) , where K

is the key generated in step 1, and sends the
resulting tokens (τ1, . . . , τpoly(λ)) to A.

5. Finally, A outputs a bit b′ and wins if b′ = b.

We define security in the “sampled” setting, which
formalizes the security definition for papers attacking
encrypted multi-map schemes, e.g., [19], as follows:

Definition 4 (Sampled minimally-leaking). The en-
crypted multi-map scheme Σ is sampled minimally-
leaking if for all p.p.t. adversaries A, the ad-
vantage that A has in winning SMLGameAΣ (1λ)
is negligible in the security parameter λ, i.e.,∣∣Pr
[
A wins SMLGameAΣ (1λ)

]
− 1

2
∣∣ = negl(λ).

We provide an equivalent simulation-based definition
in Appendix A. We note here that minimally-leaking
directly implies sampled minimally-leaking; see Ap-
pendix A.1 for the proof.

3.3 Efficiency of encrypted multi-map
schemes

In this section, we present general terminology we will
use in this paper to discuss the efficiency of an encrypted
multi-map scheme. Let Σ be an encrypted multi-map
scheme over the label space L. For each label l ∈ L, we
assume l is associated with a tuple of values, denoted as
MM(l). Following prior work [1, 2], we assume that the
encrypted multi-map EMM output by Setup contains a
set of encrypted values. Then each encrypted response
ci can be represented as a subset of this set of encrypted
values. If a value occurs in more than one response, it
is encrypted separately for each response.

The encrypted values in the response ci can be fur-
ther classified into real and non-real encrypted values
(with respect to ci). In the definitions below, let K be
the key output by the Setup algorithm run on a multi-
map MM, and for label li ∈ L, let ci be the encrypted
response ci ← Query(EMM, Token(K, li)).

Definition 5 (Real encrypted value). An encrypted
value e is real for the encrypted response ci if the
corresponding decrypted value (val, w) ← Resolve(K, e)
is an element of the tuple MM(li).

Any additional values that are part of the encrypted
response ci are referred to as “non-real” for ci. Then
from our earlier assumption about repeated values be-
ing encrypted separately, an encrypted value is real for
at most one encrypted response ci, and non-real for ev-
ery other encrypted response cj . If a value is non-real
for all encrypted responses ci, then that value is con-
sidered “information-less.” The encryption of such an
empty value is referred to as a dummy.

We define “overlaps” between encrypted responses
ci and cj as the encrypted values that are common to
both encrypted responses.
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Definition 6 (Overlap). An encrypted value e is an
overlap for the encrypted responses ci and cj if it is an
element of both the responses ci and cj .

Then each overlapping encrypted value between any two
responses ci and cj is either a dummy record, or real for
either response ci or response cj .

We define the notions of expected read efficiency
and storage overhead for encrypted multi-map schemes.
Our definitions are inspired by Cash and Tessaro’s defi-
nitions of the same name [8]; a notable difference is that
read efficiency is the additive overhead in extraneous
encrypted values read by the server (as opposed to the
multiplicative overhead). This is to accommodate the
fact that we allow for responses of length zero; when
such a response exists, the multiplicative overhead in
read-efficiency is necessarily unbounded.

Definition 7 (Additive read efficiency). The en-
crypted multi-map scheme Σ is r-read-efficient for the
input space MM if for every λ ∈ N, MM ∈MM, and in-
stance (K, EMM)← Setup(1λ, MM), the average number
of non-real encrypted values for the encrypted response
ci is at most r, i.e., Ew ←$ L[|ci| − |Resolve(K, ci)|] ≤ r.

We define the storage overhead of an encrypted multi-
map scheme as the multiplicative increase in the number
of values in the encrypted multi-map EMM as compared
to the input multi-map MM.

Definition 8 (Storage overhead). The encrypted
multi-map scheme Σ has s-storage overhead for the
input space MM if for every λ ∈ N, MM ∈ MM and
instance (K, EMM) ← Setup(1λ, MM), the total number
of encrypted values present in the encrypted multi-map
|EMM| ≤ sN , where N = |MM| for the input multi-map.

4 Bounds on Minimally-leaking
schemes

As noted in prior work [18, 30], if Σ is a volume-hiding
encrypted multi-map scheme, then the encrypted re-
sponses it produces must be each at least as long as
the maximum response length t. If there existed a la-
bel li such that the encrypted response ci for li were
shorter than the maximum length, this would reveal
that |MM(li)| is not t. Since minimally-leaking implies
volume-hiding, it follows that if Σ is minimally-leaking,
then each encrypted response is at least t long. An en-

crypted multi-map scheme that is clearly minimally-
leaking is simply padding every response up to the max-
imum response length using dummy values. Recent pa-
pers [18, 30] suggest that we can save on storage by
padding with parts of other responses instead of using
dummy values; we will refer to this latter technique as
overlapping. We will reserve the term padding to mean
using dummy values.

In this section, we first show that even if we relax the
restriction that Σ is optimally read-efficient, choosing
the overlaps “at random” cannot help to reduce the re-
quired storage (Theorem 1). Next, we show that AVLH
is not minimally-leaking (Theorem 2).

To prove these theorems formally, we introduce
the following setup: Let L = {l1, . . . , lm} be the
fixed set of queries. Let MM be any multi-map
of size N and maximum response length t. Let Σ
be any (correct) multi-map scheme for the label
space L. Let (EMM, c1, . . . , cm) ← MLExpΣ,MM(1λ),
where MLExpΣ,MM(1λ) is defined below. Let S be the
number of encrypted values in EMM. For each i ∈ [m],
let ℓi

def= |ci| denote the length of the ith encrypted re-
sponse ci. Without loss of generality, we will assume
that the number of labels is at least two, i.e., m ≥ 2.
Consider the following experiment,
MLExpΣ,MM(1λ), parameterized by the secu-
rity parameter 1λ, the encrypted multi-map
scheme Σ, and the multi-map MM:
1. Run Σ’s setup algorithm Setup on the multi-

map MM to obtain the key K and the en-
crypted multi-map EMM, i.e., (K, EMM) ←
Setup(1λ, MM).

2. For each label li ∈ L:
i. Run Σ’s token algorithm Token on the key

K and the label li; let τi be the output from
running Token.

ii. Then, run Σ’s query algorithm Query on
the encrypted multi-map EMM (from step
1) and the output τi to get the the en-
crypted response ci, i.e., τi ← Token(K, li);
ci ← Query(EMM, τi).

3. Output (EMM, c1, . . . , cm).

4.1 Randomly-overlapping schemes
cannot be Minimally-leaking

Recall that the naive approach to pad each response
with dummy values so that each padded response
is equal to the maximum response length is opti-
mally storage-efficient among all optimally read-efficient
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strategies. Thus, we have established that overlapping
cannot reduce the storage of minimally-leaking and op-
timally read-efficient schemes.

Here, we show that even if the scheme Σ is not neces-
sarily optimally read-efficient, overlapping may still not
help achieve better storage efficiency. Specifically, we
consider the case where the scheme chooses the overlaps
for each response randomly from the set of all non-real
encrypted values for the response and show that, in this
case, Σ cannot be minimally-leaking.

We first provide a formal definition of what we
mean by randomly-overlapping; to do this formally, we
define the game ROGameΣ,A(1λ), below: Recall that
(EMM, c1, . . . , cm)← MLExpΣ,MM(1λ). For all i, j ∈ [m],
recall that the overlap between ci and cj is the intersec-
tion between ci and cj . For all i ∈ [m], recall that the
real encrypted values for ci are the encrypted values in
ci whose decryptions are part of the response MM(li)
(Definition 5). So, the non-real encrypted values for ci

are the encrypted values in ci that are not real ones
for ci.
Consider the following game, ROGameΣ,A(1λ),
which is parameterized by the security parameter
1λ, the encrypted multi-map scheme Σ, and the ad-
versary A:
1. First, the adversary A chooses a multi-map MM

and indices i, j ∈ [m] and sends it to the chal-
lenger C.

2. The challenger C runs MLExpΣ,MM. Let
(EMM, c1, . . . , cm) denote the output from run-
ning the experiment, i.e., (EMM, c1, . . . , cm) ←
MLExpΣ,MM(1λ). Let E denote the set of all en-
crypted values in EMM.

3. Next, C picks a random bit b←$ {0, 1}. If b =
1, C modifies the encrypted responses as fol-
lows. For each k ∈ {i, j}, let Reals(ck) and
Nonreals(ck) be the set of real encrypted val-
ues in ck and the set of non-real encrypted
values in ck, respectively. C replaces the non-
real encrypted values for ck with a uniformly
random size-|Nonreals(ck)| sample from the set
E \ Reals(ck).

4. After possibly modifying the encrypted re-
sponses in step 3, C sends (ci, cj) to A.

5. Finally, A outputs a guess b′ for b and wins if
b′ = b.

Recall that S is the number of encrypted values in the
encrypted multi-map EMM.

Definition 9 (Randomly-overlapping). The encrypted
multi-map scheme Σ is randomly-overlapping if two
conditions are satisfied: (i) the length of each en-
crypted response is drawn independently from a fixed
distribution, and (ii) for every p.p.t. adversary A,∣∣Pr
[
A wins ROGameΣ,A(1λ)

]
− 1

2
∣∣ = negl(λ).

Here, we show an impossibility result for when Σ is
randomly-overlapping.

Theorem 1. If Σ is a randomly-overlapping encrypted
multi-map scheme, then Σ is not minimally-leaking.

Proof. Let i, j ̸= i be two indices from [m]. Let MM be
any multi-map such that |MM(li)| = |MM(lj)| = ℓ. Let
Ti = |ci| and Tj = |cj |.

We show that if Σ is randomly overlapping, then
the expected number of overlaps between ci and cj is a
function of the original response length ℓ. To see this, we
study the following sampling problem; (see Figure 2):

Fig. 2. For ℓ = 5, Ti = Tj = 10, S = 17, the sampling
experiment is as shown above. The green and red balls are the
real values for the responses ci and cj , respectively. On the left,
the sample (in dashed lines) becomes the non-real values for the
response ci. The white balls in the left sample are blue in the
experiment on the right. Then the sample on the right are the
non-real values for the response cj . The total overlap is the set
of red, green, and blue balls that are common between the two
responses.

First, we select the encrypted values that will be a
part of the encrypted response ci. Since Σ is perfectly
correct, all ℓ real encrypted values from the list MM(li)
have to be part of the encrypted response ci. Then there
remain Ti − ℓ (non-real) encrypted values that must be
part of the response.

Let B be a bag with ℓ red marbles and S − 2ℓ

white marbles. (The red marbles represent the ℓ real
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encrypted values for cj , while the white marbles repre-
sent encrypted values in EMM \ (ci ∪ cj).)

Choosing the non-real encrypted values for ci is
equivalent to choosing a random sample of size Ti − ℓ

(without replacement) from B; let X be the number of
red marbles in the sample, and so Ti−ℓ−X is the num-
ber of white marbles in the sample. (The red marbles
in the sample represent the real encrypted values for cj

that are randomly chosen to “cover” part of ci.)
Next, we sample the encrypted values that will be

part of the encrypted response cj . Similar to the previ-
ous case, the ℓ real values corresponding to MM(lj) will
be part of the response cj , and the remaining (Tj − ℓ)
will be sampled.

Then, let B′ be a bag with ℓ green marbles, Ti−ℓ−X

blue marbles, and S − ℓ − Ti + X white marbles. (The
green marbles are the real encrypted values for ci, the
blue ones are non-real encrypted values for ci which are
not real values for cj , and the white marbles are all other
encrypted values in EMM \ (ci ∪ cj).)

Choosing the non-real encrypted values for cj is now
equivalent to choosing a random sample of size Tj − ℓ

(without replacement) from B′; let X ′ be the number
of green or blue marbles in the sample.

(The green marbles in the sample are those that are
real for ci, and the blue ones are those that are non-real
for ci.)

Given both the above samples, the sum X +X ′ rep-
resents the number of overlaps between ci and cj . The
expectation of X + X ′ can be expressed as follows:

E[X + X ′]
= E

[
EX [X] + EX [X ′]

]
(2)

= E

[
(Ti − ℓ)ℓ

S − ℓ
+

ℓ∑
x=0

Pr[X = x]
(Tj − ℓ)(Ti − x)

S − ℓ

]
(3)

= E

[
Tj − ℓ

S − ℓ

(
(Ti − ℓ)ℓ
Tj − ℓ

+
ℓ∑

x=0
Pr[X = x](Ti − x)

)]

= E

[
Tj − ℓ

S − ℓ

(
(Ti − ℓ)ℓ
Tj − ℓ

+ Ti −
ℓ∑

x=0
Pr[X = x] · x

)]

= E
[

Tj − ℓ

S − ℓ

(
(Ti − ℓ)ℓ
Tj − ℓ

+ Ti −
(Ti − ℓ)ℓ

S − ℓ

)]
. (4)

Equation (2) is true from the linearity of expectation.
(3) and (4) follow from plugging in the expression of the
mean value, nK

N , of a hypergeometric distribution with
parameters: total population size N , total number K of
success states in population, and sample size n.

From (4), E[X + X ′] is equal to:

= E
[

ℓTi − ℓ2

S − ℓ
+

TiTj − ℓTi

S − ℓ
−

(Ti − ℓ)(Tj − ℓ)ℓ
(S − ℓ)2

]
=

E [TiTj ]
S − ℓ

−
ℓE [TiTj ]
(S − ℓ)2 + 2ℓ2E [Ti]

(S − ℓ)2 −
ℓ2S

(S − ℓ)2

=
(S − 2ℓ)E[Ti]E[Tj ]

(S − ℓ)2 + 2ℓ2E [Ti]
(S − ℓ)2 −

ℓ2S

(S − ℓ)2

Since Ti, Tj are sampled from a fixed distribu-
tion with bounded expectation E[T ], it follows that
E[Ti]E[Tj ] = E[T ]2 is also a bounded constant. (In
fact, we only require that Ti, Tj are sampled from fixed
distributions with the same expectation; the distribu-
tions need not be identical.) Thus, E[X + X ′] varies
non-negligibly as a function of ℓ, and so Σ cannot be
minimally-leaking since overlaps are visible to the ad-
versary.

Interestingly, Patel et al.’s dprfMM is minimally-leaking
despite being almost randomly-overlapping; at setup,
the scheme selects 2(t − ℓ) random overlaps for a re-
sponse of length ℓ. However, the total storage space is
fixed, and any encrypted value that cannot be stored
due to collisions is moved to a client stash. (See Pa-
tel et al.’s paper for more details on how this scheme
works [30].) Theorem 1 does not apply here since be-
cause of the stash. In fact, the theorem implies that the
stash is necessary; modifying the scheme so that it be-
comes randomly-overlapping, for example, by taking a
Las Vegas-style approach to setup, would not be secure.

What about the other scheme that suppresses query
volumes, namely, AVLH [17]? During setup, AVLH or-
ganizes the encrypted values into random groups: For
each label l, a random size-|MM(l)| sample X is chosen
from the set X of all bins. Each real encrypted value
is placed into a bin in X so that each bin contains ex-
actly one real encrypted value. Then, a second sample
Y of size t− |MM(l)| is chosen from the remaining bins
X \X. When the label l is queried (later on), the server
returns the contents (including dummy values) of all the
bins in either X or Y . (For more details on this, we refer
the reader to the original paper detailing AVLH [17].) It
follows that AVLH is not randomly-overlapping because
the non-real encrypted values in ci are not independent
of the non-real values in cj . Even so, we show that it
is in fact not volume-hiding [30] and so not minimally-
leaking.1

1 We note here that AVLH preceded the volume-hiding defini-
tion, and thus no claim was made that the scheme satisfied the
definition.
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Theorem 2. AVLH [17] is not minimally-leaking.

Proof. Recall that N is the size of the multi-map, and
t is the upper bound on the maximum response length.
Let B1, . . . , Bn be the n “bins.”

Let MM0 be any multi-map such that |MM0(l1)| = 0,
and |MM0(l2)| = t.

Let MM1 be any multi-map such that |MM1(l1)| =
|MM1(l2)| = t

2 , and for all 2 < i ≤ m, |MM1(li)| =
|MM0(li)|.

First, consider what happens when the multi-map
is MM0. Recall that E is the set of all encrypted values
in EMM. Let C be the random variable representing the
set of real encrypted values that are either in c1 or c2.
For each i ∈ [n], let αi be the random variable repre-
senting the number of encrypted values in E \C that are
randomly mapped to the bin Bi during setup; and let
αmax

def= max1≤i≤n αi. For each i ∈ [n], let β0,i be the
random variable representing the number of encrypted
values in E that are randomly mapped to the bin Bi

during setup; and let β0,max
def= max1≤i≤n β0,i. Clearly,

there is no chance that β0,max − αmax is greater than
one.

Compare this with the scenario in which the multi-
map is MM1. Let (α1, . . . , αn) be defined as before.
By construction, this is distributed identically to the
tuples when the multi-map is MM0. For each i ∈
[n], let β1,i be the random variable representing the
number of encrypted values in E that are randomly
mapped to the bin Bi during setup; and let β1,max

def=
max1≤i≤n β1,i. Here, there is a non-negligible probabil-
ity that β1,max − αmax = 2; this occurs whenever there
exists a bin Bi such that αi = αmax, and a real en-
crypted value for c1 and a real encrypted value for c2 are
both randomly mapped to the bin Bi. In other words,
Pr[β1,max − αmax = 2] ≥

(
t

2n

)2 = nonnegl(λ).
Since AVLH pads the bins to the size of the largest

bin, the adversary can distinguish between the scenario
in which the multi-map is MM0 from that when it is
MM1 with non-negligible advantage, just from the num-
ber of dummy values, which can be inferred from the
storage. See Figure 3.

Our results imply that the setup leakage of AVLH would
have to include the size of the bins, which is not en-
tirely independent of the input multi-map. It might be
possible to set a constant bin size and use a Las Ve-
gas approach to setup in AVLH in order to make it
minimally-leaking. However, there arises the question
of how to pick the bin size. Our proof shows that for
any pair of multi-maps with only two differing volumes,

the setup will create bins of differing sizes with non-
negligible probability. Therefore, the bin size must ac-
count for every such pair of multi-maps in order to be
minimally-leaking.

Remark 1. Note that while dprfMM is similar to
AVLH in that it uses overlaps to reduce storage, it has a
fixed storage size on the server regardless of the under-
lying multi-map. Any value that “overflows” is stored
in the client-side stash; this makes it possible for the
overlaps observable on the server-side to be both inde-
pendent of response lengths and identically distributed
for all multi-maps.

5 Bounds on Sampled
Minimally-leaking STE schemes

Recall that the adversary’s view includes the encrypted
multi-map EMM, which is the output of the scheme’s
setup algorithm, as well as the server’s states, messages,
and computations during querying.

In the “sampled” security game, the adversary does
not choose the queries. Instead, the challenger picks the
queries which are “encrypted” into search tokens and,
thus, hidden from the adversary. It is worth noting that
it may be the case that the adversary never learns which
label corresponds to which encrypted query. Still, the
adversary might glean private information: for exam-
ple, after some queries occur, the adversary can order
the encrypted responses in ascending order and count
the number of overlaps between the ordered encrypted
responses. Recall that an overlap means that the en-
crypted value is also part of another response (Defini-
tion 6). So, the overlap between the ith shortest response
Ei and the jth shortest response Ej is the set of encrypted
values that are part of both Ei and Ej .

If Σ is sampled minimally-leaking, it follows that the
adversary’s view when the scheme is run on multi-map
MM0 is indistinguishable to that when run on a different
multi-map MM1 with the same “dimensions” (i.e., size
and upper bound on the maximum response length).
Specifically, the observable statistics on overlaps when
the input is MM0 ought to be indistinguishable from the
same statistics when the input is MM1 instead. We will
use this fact to show that overlapping doesn’t help to re-
duce storage by very much even in the weaker “sampled”
security setting; we prove a tight lower bound on read ef-
ficiency for sampled minimally-leaking encrypted multi-
map schemes (Theorem 3 in Section 5.1) and a lower
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bound on storage for sampled minimally-leaking and
optimally read-efficient encrypted multi-map schemes
(Theorem 4 in Section 5.2).

To do this formally, we first introduce the exper-
iment, SMLExpMM(1λ), below and describe the setting
for all the theorem and lemma statements in this sec-
tion: Let L = {l1, . . . , lm} be the label space.
Consider the following experiment, SMLExpMM(1λ),
parametrized by the security parameter 1λ and the
multi-map MM:
1. Run the encrypted multi-map scheme’s setup

algorithm Setup on the multi-map MM to obtain
the key K and the encrypted multi-map EMM,
i.e., (K, EMM)← Setup(1λ, MM).

2. For each label li ∈ L:
i. Run Σ’s token algorithm Token on the key

K and the label li; let τi be the output from
running Token.

ii. Then, run Σ’s query algorithm Query on
the encrypted multi-map EMM (from step
1) and the output τi to get the the en-
crypted response ci, i.e., τi ← Token(K, li)
and ci ← Query(EMM, τi).

3. Recall that each encrypted response ci is a set
of encrypted values. Order the encrypted re-
sponses from smallest to largest set; ties are
broken by the value of the smallest encrypted
value in the response; let E1, . . . , Em denote this
ordered list so that Ei is the ith shortest en-
crypted response. (Note: Ei = cj for some j that
is not necessarily i.)

4. Output (K, E1, . . . , Em).

Let MM be the multi-map; and let N be the size of MM,
and let t be the upper bound on the maximum response
length. Let J

def= m −
⌊

N
t

⌋
+ 1. Let LHS (short for

“lefthand-side”) be the range [1, . . . , J − 1], and let RHS
(short for “righthand-side”) be the range [J, . . . , m].
(See Figure 1 in the introduction for a picture of what
we mean by the lefthand-side and righthand-side.)

Let Σ = (Setup, Token, Query, Resolve) be any en-
crypted multi-map scheme for the label space L that
is correct and sampled minimally-leaking. Let λ denote
the security parameter for Σ.

In all of the theorems and lemmas below, let
(K, E1, . . . , Em) ← SMLExpMM(1λ) be the output from
running SMLExpMM(1λ) (above). For every pair of in-
dices i, j ∈ [m], let the overlap between the ith shortest
response Ei and the jth shortest response Ej , denoted
OLMM(i, j), be the encrypted values that show up in
both Ei and Ej , i.e., OLMM(i, j) = Ei ∩ Ej . For an en-

crypted value e and an index i ∈ [m], let OLMM(e, i)
denote the intersection between the singleton {e} and
Ei, i.e., OLMM(e, i) = {e} ∩ Ei.

5.1 Optimal Read-efficiency

Let the “read-efficiency curve,” denoted RE : [m] 7→ N,
be the following function mapping from the set [m] of
indices to the set of non-negative integers,

RE(i) =

{⌊
N

m−i+1
⌋
, for i < J

t, for J ≤ i ≤ m.
(5)

Intuitively, the curve tightly bounds all possible
multi-maps with the parameters N , m, and t. See Fig-
ure 1 for an example. Here, we show that the necessary
and sufficient number of bits that the server reads is
dictated by the read-efficiency curve as follows:

Theorem 3. With overwhelming probability, for every
i ∈ [m], the length of the ith shortest encrypted response,
denoted |Ei|, is at least RE(i).

To prove Theorem 3, we show that for each i, there
exists a multi-map whose ith shortest (unencrypted) re-
sponse is of length RE(i).

Proof. Let I be the set of indices i in the set
{2, . . . , m} such that RE(i) > RE(i − 1); that is, I

def=
{i ∈ {2, . . . , m} | RE(i) > RE(i− 1)} . Let I = I ∪ {1}.
For each i ∈ I, let MMi be a multi-map where for
each j ∈ {i, . . . , m}, the response |MM(lj)| ≥ RE(i) =⌊

N
m−i+1

⌋
, i.e.,

MMi(j) ≥

{
0, for j < i

RE(i), for i ≤ j ≤ m;

i.e., MMi is a “rectangular” multi-map with all tuple
lengths either RE(i) or 0. Let (MMi, EMMi,1, . . . , EMMi,m)
be the result of running SMLExpMMi

. The sequence of
encrypted responses (EMMi,1, . . . , EMMi,m) is part of the
adversarial view. Note that EMMi,j does not necessar-
ily correspond to the encrypted response for query lj ,
and that the adversary is not told which encrypted re-
sponse is the result of which label. However, the ad-
versary can deduce that the longer encrypted responses
(those that are at least of length RE(i)) correspond to
labels li, . . . , lm. This is because Σ is correct, and so ev-
ery encrypted response must be at least as long as its
decryption, and a response that is at least RE(i) values
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Fig. 3. For any one run of setup, let load L′ of bin B∗ be the maximum load after values from labels l3, . . . , lm have been mapped to
bins and let L∗ be the maximum load after all the values have been mapped to bins. On the left, we show the maximum load distribu-
tion for MM0. The maximum load L∗ can only be either L′ or L′ + 1 after mapping labels l0, l1. On the right, for MM1, we see that
L∗ is L′ + 2 whenever both l0 and l1 are mapped to bin B∗, which happens with non-negligible probability.

long cannot “fit” into a shorter encrypted response. It
follows that for all j ∈ {i, . . . , m}, |EMMi,j | ≥ RE(i).

Since Σ is sampled minimally-leaking, with over-
whelming probability, for all i ∈ [m], |Ei| ≥ RE(i).

Remark 2. The bound in Theorem 3 is tight since
the encrypted multi-map scheme that pads the response
lengths to the read-efficiency curve is correct and sam-
pled minimally-leaking. See Appendix C for a formal de-
scription.

5.2 Required Storage for Optimal
Read-efficiency

The results in this section are for when Σ is correct, sam-
pled minimally-leaking, and optimally read-efficient; in
the sampled security setting, by optimally read-efficient,
we mean that with probability 1, for all i ∈ [m], |Ei| =
RE(i).

Lemma 1. For every i, j ∈ RHS, the probability that
|OLMM(i, j)| > 0 is negligible.

Proof. Let MM■ be a multi-map of size N and maxi-
mum response t such that for every i ∈ RHS, the length
of the response MM■(li) is t. Then MM■ corresponds
to the “rectangle” where all the real encrypted values
are in righthand-side. i.e.,

|MM■(li)| = t ∀i ∈ RHS.

Since Σ is correct and optimally read-efficient,

Pr
[
|OLMM■

(i, j)| > 0
]

= 0 ∀i, j ∈ RHS.

Overlaps between encrypted responses are part of the
adversary’s view. Thus the fact that Σ is also sam-
pled minimally-leaking implies that for any MM with
the same size and upper bound on the maximum re-
sponse length, for all i, j ∈ RHS, Pr[|OLMM(i, j)| > 0] =
negl(λ).

From Lemma 1, we also get the additional lemma:

Lemma 2. For every i ∈ LHS, for every encrypted
value e ∈ Ei, the probability that

∑
j∈RHS |OLMM(e, j)| >

1 is negligible.

Proof. For the sake of reaching a contradiction, assume
that there exists i ∈ LHS such that there exists e ∈ Ei

such that Pr
[∑

j∈RHS |OLMM(e, j)| > 1
]

= nonnegl(λ).
For each j ∈ RHS, |OLMM(e, j)| is either zero or one;
otherwise, Σ wouldn’t be correct. Thus, the probabil-
ity that there exist two indices j, j′ ∈ RHS such that
|OLMM(e, j)| = |OLMM(e, j′)| = 1 is non-negligible. This
implies that the responses for j and j′ overlap in the
encrypted value e with non-negligible probability, which
contradicts Lemma 1.

We will make use of Lemma 2 to prove the main lemma,
Lemma 3, below. For each i ∈ [m], let ℓi denote the
length of the result of running Σ’s Resolve algorithm on
input the key K and the encrypted response Ei, i.e.,
ℓi

def= |Resolve(K, Ei)|. In the following results, we assume
that the upper bound on the maximum response length
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t evenly divides the total number of values N in the
multi-map MM i.e.

∑
i∈RHS RE(i) = N .

An implication of Lemma 1 is that every non-real
value in the righthand-side must be covered by a (real or
dummy) value in the lefthand-side. That is, if e is a non-
real value for Ei for i ∈ RHS, then there exists j ∈ LHS
such that e is real only for Ej , or e is a dummy record.
Let the STE be balanced if values in the righthand-
side are covered by values in the lefthand-side, and vice
versa.

Lemma 3. Let Σ be balanced, and let N , m, and t be
such that

∑
i∈RHS RE(i) = N . Let η

def=
∑

i∈LHS RE(i)−N .
For each d ∈ {0, . . . , η}, when Σ’s setup algorithm in-
corporates a total of d dummy values into the encrypted
multi-map, with overwhelming probability,∑

i∈LHS

∑
j∈RHS

|OL→MM(j, i)| ≥
∑

i∈LHS
(RE(i)− ℓi)− d.

where OL→MM(j, k) denotes the real encrypted values in
the encrypted response EMMi,j that overlap the encrypted
response EMMi,k, and ℓi

def= |Resolve(K, Ei)|.

Proof. The proof is by cases. In the first case, setup
adds no dummy values. In the second case, setup adds
any number of dummy values between 1 and η.

Case 1: d = 0. Since there are no dummy values,
the non-real encrypted values in any encrypted response
have to be real encrypted values in some other encrypted
response. In order to characterize these overlaps, we de-
fine a series of multi-maps MMi. Intuitively, each MMi

is a multi-map such that the response lengths |MM(lj)|
for j ≥ i are all exactly RE(i). See Figure 4 for an exam-
ple. A multi-map MMi is defined for each “step” index
i, where the value of RE(i) increases, as shown in the
figure.

Formally, let I be the set of indices i ∈ {2, . . . , m}
such that RE(i) > RE(i − 1). For each i ∈ I, we define
the multi-map MMi as follows. Let f : [m] 7→ N be a
fixed function such that for all 1 ≤ j ≤ m, f(j) ≤ RE(j),
and

∑
1≤j<i f(j) = N −

∑
i≤j≤m RE(i).

|MMi(j)| =

{
f(j), for 1 ≤ j < i

RE(i), for i ≤ j ≤ m.

We define the additional multi-map MM1. Let imin be
the smallest value in I. Let g : [m] 7→ N be a fixed
function such that for all 1 ≤ j ≤ m, RE(1) ≤ g(j) ≤
RE(j), and

∑
imin≤j≤m g(j) = N −

∑
1≤j<imin

RE(j).

|MM1(j)| =

{
RE(j), for j < imin

g(j), for imin ≤ j ≤ m.

For each i ∈ I, consider the multi-map MMi:
Let (KMMi

, EMMi,1, . . . , EMMi,m)← SMLExpMMi
(1λ).

For each index j ∈ [m], let RMMi,j ⊆ EMMi,j denote the
part of EMMi,j that when decrypted equals the response
Resolve(KMMi

, Ei); these are the real encrypted values
in EMMi,j . For indices j, k ∈ [m], let OL→MM(j, k) be the
encrypted values in RMMi,j that “cover” part of EMMi,k,
i.e., OL→MMi

(j, k) = RMMi,j ∩ EMMi,k.
Since Σ is correct, for any i ≤ j ≤ m, the response

to lj has to be long enough to hold all the RE(i) values.
Therefore, the response to lj cannot be one of the (i−1)
shortest responses. This implies that for every i ≤ j ≤
m, the jth shortest encrypted response EMMi,j includes
exactly RE(i) real encrypted values.

From Lemma 1, every non-real encrypted value in
the righthand-side must be “covered by” a real en-
crypted value in the lefthand-side. That is, with over-
whelming probability, for every e ∈ EMMi,j such that
j ∈ RHS and e ̸∈ RMMi,j , there exists k ∈ LHS and
e′ ∈ RMMi,k such that e = e′. The non-real encrypted
value must be covered by something, and it cannot be
covered by a real encrypted value in the righthand-side
because this would violate Lemma 1.

Moreover, from Lemma 2, the covered encrypted
value is unique; a real encrypted value from the
lefthand-side cannot cover two non-real encrypted val-
ues in the righthand-side because this would violate
Lemma 2.

From geometry and our assumption that∑
i∈RHS RE(i) = N , the number of real encrypted

values in the lefthand-side equals the number of
non-real encrypted values in the righthand-side; both
of these quantities sum to N −

∑
j∈RHSRMMi,j . It

follows that each of the real encrypted values in the
lefthand-side covers a distinct non-real encrypted value
in the righthand-side. Each i ≤ j < J has exactly
RE(i) real encrypted values, and so, with overwhelming
probability, the total overlap with the righthand-side∑

k∈RHS |OLMMi
(j, k)| ≥ RE(i).

Using a similar argument and multi-map MM1, we
can show that with overwhelming probability, for each
1 ≤ j < imin,

∑
k∈RHS |OLMM1(j, k)| ≥ RE(j).

Since Σ is sampled minimally-leaking and the num-
ber of overlaps are observable by the adversary, the over-
laps for the multi-maps MMi must be indistinguishable
from the overlaps for any other multi-map MM with
the same parameters N , m, and t. It follows that, with
overwhelming probability, regardless of the multi-map,
for all i ∈ LHS,

∑
j∈RHS |OLMM(i, j)| ≥ RE(i). Since for

any MM and i ∈ LHS, the ith response only has ℓi real
encrypted values, this implies that the rest of the over-
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i

RE(i)

1 94 6 7

2
3
4

6

i

ℓi MM1

1 9

2

i

ℓi MM4

1 94

3

i

ℓi MM6

1 965

2

4

i

ℓi MM8

1 97

6

Fig. 4. A series of multi-maps {MMi} in blue for N = 18, m = 9, t = 6. Each multi-map MMi is defined at one of the step indices i

such that RE(i) > RE(i − 1).

lap must be covered by real encrypted values from the
righthand-side. Then with overwhelming probability,∑

i∈LHS
∑

j∈RHS |OL→MM(j, i)| ≥
∑

i∈LHS (RE(i)− ℓi) .

Case 2: 1 ≤ d ≤ η. When a dummy is added to
the righthand-side, the number of non-real encrypted
values on the lefthand-side that need to be covered by
something in the righthand-side remains the same. How-
ever, when a dummy is added to the lefthand-side, the
number of non-real encrypted values in the lefthand-
side decreases by one. Then the total number of non-
real encrypted values in the lefthand-side that must be
covered by the righthand-side decreases at most by the
number of dummies d. Thus, by a similar argument
to that of case 1, it follows that for each 1 ≤ d ≤ η,
when Σ’s setup algorithm incorporates a total of d

dummy values into the encrypted multi-map, with over-
whelming probability,

∑
i∈LHS

∑
j∈RHS |OL→MM(j, i)| ≥∑

i∈LHS (RE(i)− ℓi)− d.

This completes our proof of Lemma 3.

We are now ready to prove the main result of this sec-
tion:

Theorem 4. Let Σ be balanced, and let
∑

i∈RHS RE(i) =
N where N is the size of the multi-map. With over-
whelming probability, Σ’s setup algorithm adds at least∑

i∈LHS RE(i)−N dummy values to the encrypted struc-
ture.

Proof. For the sake of reaching a contradiction, assume
that with non-negligible probability, the setup algorithm
adds d dummy values where d is strictly less than η

def=∑
i∈LHS RE(i)−N .

From Lemma 3, with overwhelming probability,∑
i∈LHS

∑
j∈RHS

|OL→MM(j, i)|

≥
∑

i∈LHS
(RE(i)− ℓi)− d

>
∑

i∈LHS
RE(i)−

(
N −

∑
i∈RHS

ℓi

)
−

( ∑
i∈LHS

RE(i)−N

)
=
∑

i∈RHS
ℓi. (6)

From (6), there are more non-real encrypted values
in the lefthand-side that are covered by a real encrypted
file in the righthand-side than there are real encrypted
values in the righthand-side. This implies that there ex-
ists a real encrypted value in the righthand-side that
covers two encrypted values e1 and e2 in the lefthand-
side. However, since Σ is balanced, this would reveal
to the adversary that e1 and e2 are non-real encrypted
values, and Σ would not be sampled minimally-leaking.

It follows that s ≥ (η + N)/N =
∑

i∈LHS RE(i)/N .

5.3 Experiments

We now present a brief experimental analysis of our
bounds on the storage efficiency of optimally read-
efficient minimally-leaking schemes. At a high level, we
look to answer the following questions: (i) is our lower
bound in the sampled setting, which only applies to bal-
anced schemes, too restrictive? and, (ii) is there a sig-
nificant difference between the storage lower bounds in
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the standard and sampled settings for minimally-leaking
STE schemes?

For (i), we compare our lower bound to the naive
upper bound scheme that pads every encrypted response
to the read-efficiency curve. Our experimental results
show that our lower bound is very close to the upper
bound for the sampled setting. This suggests that any
tighter upper or lower bound would have to utilize sub-
stantially more complicated techniques.

For (ii), we see, as expected, that the lower bound
on storage for the standard setting dominates the lower
bound for the sampled setting. We conclude that the
sampled setting does indeed allow for significantly more
storage-efficient schemes than in the standard STE
model.

The results for both (i) and (ii) are more pro-
nounced for larger values of N , m, and t. We show our
results for N = 65536 in Figure 5 and refer the inter-
ested reader to Appendix C for further details.

(a) N = 65536, m =
√

N

(b) N = 65536, t =
√

N

Fig. 5. N = 65536, and m =
√

N or t =
√

N . In each plot, the
blue curve represents the lower bound on storage overhead for the
minimally-leaking setting. The green curve represents the storage
overhead of the naive sampled minimally-leaking scheme, and the
red curve represents our lower bound for the sampled minimally-
leaking setting.

6 Conclusion and Future Work
This paper presents the first storage and read efficiency
bounds for STE schemes for multi-maps that leak at
most the query equality pattern.

While overlapping can significantly reduce the re-
quired storage (e.g., dprfMM [30] does this), this is
sometimes impossible and, in general, tricky to achieve.
For a correct (and stash-less) encrypted multi-map
scheme Σ: if Σ is minimally-leaking and optimally read-
efficient, it is impossible; if Σ is sampled minimally-
leaking and optimally read-efficient scheme, it is impos-
sible using a balanced technique; and if Σ is randomly-
overlapping, it cannot be minimally-leaking. Currently,
the only known minimally-leaking scheme that is much
more efficient than pad-to-max is dprfMM that stores
some of the answers on the client-side. This stash is cru-
cial to both security and correctness of the scheme, as
we discussed in Section 4.

We conjecture that the problem of arranging the
overlaps to find a solution with minimal storage costs
in a correct, stash-less, and minimally-leaking manner
may be computationally intractable. Even finding and
analyzing a non-optimal solution may be difficult. We
leave this as an open problem for future research.
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A Simulation-based definitions
In this section, we provide formal simulation-based def-
initions that are equivalent to minimally-leaking (Defi-
nition 3) and sampled minimally-leaking (Definition 4).

Minimally-leaking. Let L = {l1, . . . , lm} be the
label/query space. The leakage profile L = (LS,LQ)
is a pair of functions: the setup leakage function LS
and the query leakage function LQ. It defines the in-
formation about the multi-map MM that is allowed
to leak during setup and querying. The idea is that
the adversary should not be able to tell whether it
is interacting in the real setting in which the chal-
lenger is running the STE scheme’s algorithms, or in
the ideal setting in which the simulator knows only
the setup leakage, LS(MM), and the query leakages,
LQ(MM, (q1)), . . . ,LQ(MM, (q1, . . . , qℓ)).

Formally, we define security with respect to the fol-
lowing experiments.
The experiment RealAΣ (1λ) is parameterized by the
security parameter 1λ, the adversary A, and the
STE scheme Σ = (Setup, Token, Query, Resolve).
1. The adversary A chooses the multi-map MM

and sends MM to the challenger C.
2. The challenger C runs Setup(1λ, MM) and sends

the resulting encrypted multi-map EMM to the
A.

3. A picks a query q and sends it to C.
4. C runs Token(K, q), where K is the key gener-

ated in step 1, and sends the resulting token τ

to A.
5. Steps 3-4 are repeated a polynomial (in λ) num-

ber of times.
6. Finally, A outputs a bit b.

The experiment IdealA,S
L (1λ) is parameterized by

the security parameter 1λ, the adversaryA, the sim-
ulator S, and the leakage profile L = (LS,LQ).
1. The adversary A chooses the multi-map MM

and sends MM to the challenger C.
2. The challenger C computes the setup leakage
LS(MM) from MM and sends just the leakage to
the simulator S. The simulator S computes the
encrypted multi-map EMM and returns EMM
to A (via C).

3. A picks a query q and sends it to C.
4. C computes the query leakage LQ(MM, q⃗) from

MM and the sequence q⃗ of queries so far, and
sends just the leakage to S. S computes the
token τ and send τ to A.

5. Steps 3-4 are repeated a polynomial (in λ) num-
ber of times.

6. Finally, A outputs a bit b.

In the literature (e.g., [17, 18]), security is defined
with respect to these experiments as follows:

Definition 10 (L-security). The STE scheme Σ is L-
secure for the leakage profile L = (LS,LQ) if there exists
a p.p.t. simulator S such that every p.p.t. adversary A
can distinguish whether it is interacting in the real set-
ting RealAΣ (1λ), or in the ideal setting IdealA,S

L (1λ), with
only negligible advantage. Σ is adaptively L-secure if in
step 3 of the experiments, A chooses the queries adap-
tively; that is, A chooses the next query based on the en-
crypted multi-map and interactions from prior queries.

Definition 11 (Simulation-based minimally-leaking).
The STE scheme Σ is minimally-leaking if it is non-
adaptively (LS,LQ)-secure, where the setup leakage
LS reveals only the size and the upper bound on the
maximum response length of the multi-map, and the
query leakage LQ reveals only the query equality pattern.

Sampled minimally-leaking. Simulation-based, sam-
pled minimally-leaking is defined with respect to the fol-
lowing modifications to RealAΣ (1λ) and IdealA,S

L (1λ). The
modifications are boxed for better readability:
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The experiment SampledRealAΣ,W (1λ) is parameter-
ized by the security parameter 1λ, the adversary A,
the STE scheme Σ = (Setup, Token, Query, Resolve),
and the query distribution W .
1. The adversary A chooses the multi-map MM

and sends MM to the challenger C.
2. The challenger C runs Setup(1λ, MM) and sends

the resulting encrypted multi-map EMM to the
A.

3. C samples a query q ← L.
4. C runs Token(K, q), where K is the key gener-

ated in step 1, and sends the resulting token τ

to A.
5. Steps 3-4 are repeated a polynomial (in λ) num-

ber of times.
6. Finally, A outputs a bit b.

The experiment SampledIdealA,S
L,W (1λ) is parameter-

ized by the security parameter 1λ, the adversary A,
the simulator S, the leakage profile L = (LS,LQ),
and the query distribution W .
1. The adversary A chooses the multi-map MM

and sends MM to the challenger C.
2. The challenger C computes the setup leakage
LS(MM) from MM and sends just the leakage to
the simulator S. The simulator S computes the
encrypted multi-map EMM and returns EMM
to A (via C).

3. C samples a query q ← L.
4. C computes the query leakage LQ(MM, q) from

MM and q and sends just the leakage to S. S
computes the token τ and send τ to A.

5. Steps 3-4 are repeated a polynomial (in λ) num-
ber of times.

6. Finally, A outputs a bit b.

Definition 12 (W -sampled L-security). The STE
scheme Σ is W -sampled L-secure for the leakage profile
L = (LS,LQ) if there exists a p.p.t. simulator S such
that every p.p.t. adversary A can distinguish whether it
is interacting in the real setting SampledRealAΣ,W (1λ),
or in the ideal setting SampledIdealA,S

L,W (1λ), with only
negligible advantage.

Definition 13 (Sim-based sampled minimally-leaking).
The STE scheme Σ is sampled minimally-leaking if it is
Uniform(L)-sampled (LS,LQ)-secure, where Uniform(L)
is the uniform distribution over the set L of labels,
the setup leakage LS reveals only the size and the
upper bound on the maximum response length of the

multi-map, and the query leakage LQ doesn’t reveal
anything.

A.1 Minimally-leaking implies sampled
minimally-leaking

Theorem 6. If Σ = (Setup, Token, Query, Resolve) is
a minimally-leaking STE scheme, then it is sampled
minimally-leaking.

Proof. Suppose that Σ is not sampled minimally-
leaking, i.e., there exists a p.p.t. adversary A that wins
SMLGameAΣ (1λ) with non-negligible advantage. From
A, we can construct a p.p.t. reduction B that wins
MLGameAΣ (1λ) with non-negligible advantage as follows:

Let C be the challenger in MLGameAΣ (1λ).
1. First, A picks two multi-maps MM0 and MM1 of the

same dimensions (i.e., size and upper bound on the
maximum response length) and sends (MM0, MM1)
to B; B forwards the multi-maps to C.

2. Then, C samples a bit b←$ {0, 1} and runs the STE
scheme’s setup algorithm Setup on the security pa-
rameter and the randomly chosen multi-map MMb

and replies to B with the generated encrypted multi-
map EMM; B forwards EMM to A.

3. Recall that Uniform(L) is the uniform distri-
bution over the set L of labels. B samples
the queries q1, . . . , qpoly(λ) independently and uni-
formly at random from Uniform(L). B sends
((q1, . . . , qpoly(λ)), (q1, . . . , qpoly(λ))) to C.

4. C computes the tokens (τ1, . . . , τpoly(λ)) by running
the STE scheme’s token algorithm Token on the key
K from step 1 and each query qi, and sends the
tokens to B; B forwards the tokens to A.

6. When A outputs a guess b′, B outputs the same
guess b′.
Analysis of B. The reduction works because (i) it

runs in polynomial time, (ii) the transcript between A
and B is identically distributed to what A expects to
see “in the wild,” and (iii) B wins whenever A wins.

B Optimal storage for optimal
read efficiency

Suppose that Σ is minimally-leaking and optimally
read-efficient; by optimally read-efficient, we mean that
with probability 1, L1 = · · · = Lm = t where Li denotes
the length of the ith encrypted response ci. We show
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that, in this case, Σ necessarily adds at least as many
dummy values as pad-to-max. That is, each response
must be “padded” with sufficiently many dummy val-
ues so that its length is t.

Theorem 7. If Σ is minimally-leaking and optimally
read-efficient, then with overwhelming probability, the
scheme stores at least mt values.

Proof. For the sake of reaching a contradiction, assume
that there exists a multi-map MM and indices i, j ∈ [m]
such that the size of the “overlap” (i.e., the intersection)
between the ith encrypted response ci and the jth en-
crypted response cj is at least one with non-negligible
probability, i.e., Pr[|ci ∩ cj | ≥ 1] = nonnegl(λ). Since Σ
is correct, this would reveal to an adversary A that
MM cannot be a multi-map such that both |MM(li)| and
|MM(lj)| equal t. That is, this would reveal to A that at
least one of |MM(li)| or |MM(lj)| is less than t, and so
Σ would not be minimally-leaking.

C Experiments
In this section, we show experimentally that our lower
bound on storage overhead for the sampled minimally-
leaking setting (Theorem 4) matches the naive “pad to
the read-efficiency curve” scheme for large values of N ,
m, and t. We now formally describe the naive sampled
minimally-leaking scheme:

Given a multi-map MM with labels L =
{l1, . . . , lm} and their corresponding response
lengths ℓ⃗ = (ℓ1, . . . , ℓm), a dictionary encryp-
tion scheme STEDX = (Setup, Get), and symmet-
ric encryption scheme SKE = (Gen, Enc, Dec),
and a pseudo-random function FK(·). Let N, m

and t be the public parameters of the scheme.

We define the STE scheme
STEML

MM(Setup, Token, Query, Resolve) as follows:
– Setup(MM, 1λ): Sample a key K ← {0, 1}λ. Run

K1 ← SKE.Gen(1λ). Sort the response lengths
ℓ1, . . . , ℓm in ascending order. For each label lj
in sorted order:
1. Compute RE(j). Recall that in the sorted

order, ℓj ≤ RE(j) for any multi-map. Add
dummy values to the response MM(lj) till
the total response length is RE(j).

2. Encrypt each value with key K1 and store
the encrypted response at the next available
location in the encrypted structure EMM.
Let this location be Lj .

3. Add the entry (FK(lj), (Lj , j)) to the dic-
tionary DX.

Finally, setup the encrypted dictionary
(K2, EDX) ← STEDX.Setup(1λ, DX). Output
keys (K, K1, K2) to the client and (EMM, EDX)
to the server.

– Token(K, l): Output τ = FK(l).
– Query(EMM, τ): The client and server execute

(Lk, k)← STEDX.Get(τ, K2). Output the RE(k)
encrypted values stored at Lk in EMM.

– Resolve: The client uses key K1 to decrypt all
the values in the encrypted response, and dis-
cards the empty values.

Intuitively, this scheme is secure in the sampled
minimally-leaking setting because: (1) the adversary’s
view for setup is identical for all multi-maps with
the same parameters N , m, and t; and (2) there
are no overlaps in the encrypted responses. Then
the adversarial view for the sampled query phase is
identically-distributed on any multi-map. In particu-
lar, the simulator can simulate the adversary’s view
knowing only the parameters N , m, and t. We formally
prove the security of this scheme in Appendix D.

Our experiments indicate that our lower bound
matches the storage overhead of the scheme closely for
large values of N , m, and t. In particular, when m or
t are O(

√
N), our bound is essentially tight.2 Addition-

ally, as expected, the naive sampled minimally-leaking
scheme has asymptotically better storage overhead with
respect to the lower bound for the minimally-leaking
setting (Theorem 7).

2 From the collection of information retrieval datasets held at
the University of Glasgow [27] we see that m = O(

√
N) for

almost all the datasets.
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Observations. The plots in Figure 6 show our ob-
servations when N ∈ {218, 220}. We notice that the stor-
age overhead of the minimally-leaking scheme asymp-
totically dominates that of the sampled minimally-
leaking scheme in all settings. Further, our lower bound
on the storage overhead becomes tighter for larger (more
realistic) values of N .

D Proof of security of scheme
STEML

MM

Theorem 8. If STEDX is (NDX, resp)-secure, then
scheme STEML

MM is sampled minimally-leaking.

Proof. Let SDX be the simulator guaranteed to exist
by the security of the dictionary encryption scheme
STEDX. To prove security we construct a simulator
S such that a computationally-bounded adversary A
cannot distinguish between SampledRealAΣ,W (1λ) and
SampledIdealA,S

L,W (1λ) where Σ = STEML
MM, W is the uni-

form distribution on L and L = (LS,LQ) where LS =
(N, t) and LQ is empty.
Simulating Setup. Given LS and the (public) label space
L, S computes the curve RE(N, m, t), and samples a key
K from {0, 1}λ.

– S generates a key K1 ← SKE.Gen(1λ) and creates
encryptions of ⊥ for each response length RE(i).

– S generates encrypted array EMM by placing the
encrypted responses in ascending order of length,
RE(i).

– S generates EDX′ ← SDX(m).
– S sends (EMM, EDX′) to the adversary A.

Simulating Query. Given the number of queries n

from the challenger C, the simulator samples uniformly
lj ←$L, j = 1, . . . , n. For each lj , it runs SDX(Lj , j) to
simulate a Get on EDX′.

Now let Game0 be the same as the
SampledRealAΣ,W (1λ) experiment with Σ = STEML

MM
and W the uniform distribution on L, for some multi-
map MM of size N , and upper bound on the maximum
response length t. Consider the following experiments:

– Game1: Same as Game0 except all the encrypted val-
ues are replaced with encryptions of ⊥. The proba-
bilities of Game1 and Game0 outputting 1 are negli-
gibly close by the security of the encryption scheme
SKE.

– Game2: Same as Game1 except EDX is replaced by
SDX(m) and every Get on EDX is replaced by run-

ning SDX(Lj , j) for the corresponding lj . The proba-
bilities of Game2 and Game1 outputting 1 are negli-
gibly close by the security of the dictionary encryp-
tion scheme STEDX.

– Game3: Same as Game2 except that the queries in
the multi-map are permuted such that the ascending
order of response lengths is also the lexicographical
order. The probability of Game3 outputting 1 is dis-
tributed identically to that of Game2 because: (1)
the adversary’s view during Setup is identical; and
(2) during Query, the uniform distribution on L is
identical to the uniform distribution on any permu-
tation of L.

– Game4: Same as Game3 except the n queries are
sampled by the simulator S instead of the challenger
C. The output of Game4 is identically distributed to
that of Game3.

We finally note that the probability of Game4 outputting
1 is exactly that of SampledIdealA,S

L,W (1λ) outputting 1
and our proof is complete.
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(a) N = 262144, m =
√

N (b) N = 262144, t =
√

N

(c) N = 1048576, m =
√

N (d) N = 1048576, t =
√

N

Fig. 6. N = 262144, 1048576, and m =
√

N or t =
√

N . In each plot, the blue curve represents the lower bound on storage overhead
for the minimally-leaking setting. The green curve represents the storage overhead of the naive sampled minimally-leaking scheme, and
the red curve represents our lower bound for the sampled minimally-leaking setting.
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