
Structured Encryption and

Distribution-aware Leakage Suppression⋆

Marilyn George
MongoDB Research

Seny Kamara
Brown University, MongoDB Research

Tarik Moataz
MongoDB Research

Zachary Espiritu
MongoDB Research

Abstract. A leakage suppressor is a compiler that transforms a struc-
tured encryption (STE) scheme into a new scheme with an improved
leakage profile. General-purpose suppressors for the query equality (qeq)
pattern—which reveals if and when two queries are the same—were given
for both static (Kamara et. al, Crypto ’18) and dynamic (George et. al,
Eurocrypt ’19) encrypted structures. While the schemes that result from
these suppressors are asymptotically efficient, they are not practical due
to large constants in their query complexity.
In this work, we propose a new query equality suppressor for dictionary
encryption schemes that results in practical qeq-hiding encrypted dic-
tionaries at the cost of revealing the distribution of the queries. The re-
sulting constructions are distribution-aware, in the sense that they make
use of the query distribution, and distribution-leaking in the sense that
they also reveal it. We show how to instantiate and optimize our sup-
pressor for query distributions that are Zipf-distributed, resulting in a
scheme with O(1) online query complexity at the cost of a rebuild with
O(m log2 m/ log logm) complexity, where m is the size of the input dic-
tionary.
Keywords. structured encryption, leakage suppression, oblivious dictio-
naries.

1 Introduction

A structured encryption (STE) scheme encrypts a data structure in such a way
that it can be privately queried. STE schemes can be used to design sub-linear

⋆© IACR 2025. This article is the final version submitted by the author(s) to the
IACR and to Springer-Verlag on 10 Sep 2025.

1

searchable symmetric encryption (SSE) schemes [15,17,21,37,40], encrypted re-
lational databases [18,36,44], encrypted non-relational databases [45], encrypted
blockchain databases [1], and end-to-end encrypted applications [23,47]; to name
a few examples. Like all sub-linear encrypted search solutions, STE schemes
typically achieve efficiency by leaking some information about the data and/or
queries which is formally captured by a leakage profile.

Leakage suppression. In [46], Kamara, Moataz and Ohrimenko initiated the
study of leakage suppression which studies general-purpose methods that sup-
press the leakage of STE schemes. These methods usually consist of an encoder
that transforms data structures and of a compiler or suppressor that trans-
forms an STE scheme with a particular leakage profile into a new scheme with
less leakage. Note that, typically, leakage suppression focuses on general-purpose
techniques that completely suppress a particular leakage pattern like the query
equality (i.e., if and when a query is repeated). For example, [46] and its exten-
sion to the dynamic case by George, Kamara and Moataz [26] describe a query
equality suppressor for a large class of STE schemes by abstracting and gener-
alizing the square root ORAM construction of Goldreich and Ostrovsky [27].

While the suppressors of [46] and [26] result in schemes that are asymptot-
ically better than black-box ORAM simulation and even comparable to some
custom oblivious data structures, they are still not practical. In particular, the
suppressed schemes always have high communication costs. More concretely, the
communication overhead of queries can be over 15× that of the pre-transformed
qeq-revealing construction [26]. In addition, we know that any STE scheme that
leverages ORAM as a building block incurs at least a logarithmic computation
and communication overhead given existing ORAM lower bounds [27, 51]. Ex-
isting work also shows that similar bounds apply to any STE scheme that is
qeq-hiding [60]. Given this state of affairs, it is natural to ask:

Are there practical encrypted dictionary constructions that fully suppress
query equality leakage while also supporting fast queries?

Epoch-based leakage suppression. In this work, we address this question in several
respects. First, we make the case for an epoch-based leakage suppression model
for the query equality leakage. Specifically, we construct encrypted dictionaries
that support one epoch of query-equality-hiding queries before they have to
be reset or rebuilt in some way. Epoch-based query-equality-hiding has already
been used in qeq suppressors [26, 46]. Squareroot ORAM can also be viewed as
an instance of an epoch-based query-equality-hiding suppressor [27].

Interestingly, in the quest for practical leakage suppression, epoch-based ap-
proaches have some clear advantages: first, purely from a theoretical perspec-
tive, if we allow for a periodic expensive rebuild, we could offload some of the
(necessary) costs of leakage suppression in order to achieve fast online queries.
Additionally, from a real-world perspective, this design paradigm of periodic per-
formance degradation is well-understood in practical settings such as database
backup and maintenance.

2

Replication-based qeq-hiding. Another useful approach for query- equality-hiding
is replication — or simply making copies of label-value pairs in the dictionary
and querying an unused copy of the label-value pair at query time. Although
replication has some practical drawbacks, like increased server storage and client
state, it can however enable a qeq-suppressing scheme to have the same ‘online’
query complexity as a qeq-leaking scheme.

While replication for qeq-hiding has appeared in prior literature, most promi-
nently in the Pancake scheme by Grubbs, Khandelwal, Lacharité, Brown, Li,
Agarwal and Ristenpart [28] and the Waffle scheme by Maiyya, Vemula, Agrawal,
El Abbadi and Kerschbaum [54]; it has not been studied as a general technique
for provable leakage suppression. For example, while both Pancake and Waffle
have small server storage and communication overhead, the total client-side state
is at least linear in the size of the dictionary. Additionally, Pancake achieves a
security notion known as ROR-CDDA while Waffle achieves (α, β)-uniformity,
both of which are not comparable to the standard leakage-based definitions in
structured encryption.

On the other hand, our replication-based suppressor is provably qeq-hiding
and allows for multiple tradeoffs. In fact, the bulk of our technical challenge
lies in reducing both the server storage and client state simultaneously while
preserving security. We compare our work to Pancake in more detail in the full
version of the paper. We also present a high-level overview of our suppression
techniques in Figure 2 and a more detailed discussion in Section 1.2.

Distribution-aware leakage suppression. One of the tradeoffs we explore towards
more practical constructions is using the client’s query distribution. Our result-
ing constructions are distribution-aware, in the sense that they make use of the
query distribution, and distribution-leaking in the sense that they also reveal it.
As we will see, using (and therefore leaking) the query distribution can lead to
non-trivial efficiency improvements—especially with respect to server storage—
but it can be quite subtle and requires some care. In some settings, however,
distribution leakage might be justified. This is the case, for example, in set-
tings where the adversary already knows the query distribution from auxiliary
information. Consider a case where an encrypted structure is used to index a
collection of English documents. It might be the case that the adversary already
knows the language of the documents via auxiliary information so revealing it
via the scheme might not add to the adversary’s knowledge.

Another, perhaps more subtle scenario, is in the context of leakage attacks.
Specifically, almost all leakage attacks in the literature assume knowledge of the
query distribution. Therefore, if one believes that a particular leakage attack is
applicable then one must believe that knowledge of the distribution is publicly
available and, therefore, leaking it does not improve the attack. Note that we
are not suggesting here that one should casually leak the distribution; on the
contrary one should only use such a scheme if the attack given access to the query
distribution still has very low recovery rates. What we are saying is that in such
scenarios, the fact that the scheme reveals the distribution does not necessarily
improve the attack since the adversary is already assumed to know it.

3

1.1 Our Contributions

In this work, we revisit the problem of query-equality-hiding encrypted dictio-
naries in several respects. In particular, we seek practical constructions for query-
equality-hiding encrypted dictionaries. To achieve this, we propose a replication-
based leakage suppressor for the query equality pattern. Note that by practical,
here, we mean schemes with: (1) constant online query complexity, which is
not achievable via existing full suppressors [26,46]; and (2) sub-linear client-side
storage which is not achieved by existing replication-based constructions like
Pancake [29] and Waffle [54]. We summarize our contributions below.

Shuffle-based rebuild compiler. In order to support an epoch-based qeq-hiding
dictionary scheme, we construct an oblivious shuffle-based rebuild compiler SRC.
At a high-level SRC obliviously shuffles and re-encrypts the encrypted data
structure, thereby suppressing all correlations between queries before and after
the rebuild. Concretely, we instantiate SRC using the CacheShuffle protocol from
Patel, Persiano and Yeo [59] in order to leverage its tradeoffs between small
client state and total communication complexity. In particular, CacheShuffle
uses O(N logS N) communication to obliviously shuffle an array of size N with
O(S) client state, which allows us to make this tradeoff in our final suppressor.

Distribution-aware qeq suppressor. We design a distribution-aware query equal-
ity suppressor ERS using a variety of techniques including distribution-aware
replication, counter functions, sketching schemes, a client-side cache and a leakage-
free rebuild (See Figure 2). For any input dictionary and query distribution, our
suppressor always outputs a qeq-hiding static dictionary scheme. However, the
overall storage and communication of the resulting scheme will depend on the
specific instantiations of our techniques chosen for the input query distribution.

Instantiation for the Zipf distribution. Though one could in theory use a fixed
instantiation of our techniques for any query distribution, custom instantiations
yield better storage overheads. In particular, our techniques perform better when
instantiated for skewed distributions, which are common in practice. Towards
this end, we show how to instantiate our suppressor for the Zipf distribution.
The Zipf distribution captures settings where a small number of labels are more
likely to be queried than others, and has been shown to model publicly available
query logs [43]. It has also been used to model the distribution of multi-map
data structures in order to study the efficiency of various EMM constructions
[5, 38, 46, 61]. The Zipf distribution is also used to model record accesses in the
Yahoo! Cloud Serving Benchmark (YCSB) for cloud data services [20].

We instantiate our suppressor in two modes: one with client state that grows
as the (s− 1)-th root of m and the other with client state polylogarithmic in m,
where m is the size of the input dictionary and s is the parameter of the Zipf
distribution. In Figure 3 we show how the resulting qeq-hiding schemes from
both modes compare to existing encrypted dictionary schemes. In particular, we
compare to standard (leaky) dictionary encryption scheme Π+

bas from Cash et

4

al. [17]1, the oblivious dictionary scheme ΣODS from Wang et al. [69], and the
Pancake construction from Grubbs et al. [29]. Figure 3 provides a summary of the
comparison in terms of storage, communication, queue waiting time, supported
operations, and security. We provide a detailed explanation of our comparison
in the full version of our paper.

A note on dynamism. A limitation of our suppressor is that it can only output
static dictionary encryption schemes. We note, however, that static techniques
are important for at least two reasons: (1) there are many sensitive static datasets
that need to be protected (e.g., genomic data, archived financial transactions,
census and demographic data, archived educational records, criminal records);
and (2) static techniques often lead to future work on dynamic techniques. One
of the main challenges in designing dynamic suppressors is removing correla-
tions between queries and the supported update operations (e.g., adds, deletes
or edits). This challenge is particularly hard to overcome for replication-based
suppressors, because updates need to be propagated to all unused replicas while
maintaining security. For the special case of edit operations, one could try to
adapt techniques from the Pancake system [29]. More precisely, in Pancake, the
client edits the values of labels by modifying the base construction in two ways:
(1) the client (or its proxy) caches the updated value until the update can be
propagated to all the replicas of its label; (2) each get operation on a label is
followed by a put on the same label with an encrypted value. If the label in
question has a new value in the client/proxy cache, then the encryption is of
the new value. On the other hand, if the label has no cached value, then the
encryption is just a re-encryption of the value that was retrieved during the get.
Once an updated value has been propagated to all the replicas of a label, it is
removed from the cache.

One reason we cannot apply this technique directly is that our suppressor
maintains only sublinear client-side state and this approach can result in linear
client-side storage for some update distributions. If we further want to support
the addition and deletion of labels, the problem becomes significantly more com-
plicated. We now have to either use enough replicas at setup time to support
future adds or increase and decrease the number of replicas as the underlying
dictionary grows and shrinks. Both these approaches would lead to additional
leakage and efficiency costs depending on the add and delete distributions. In
summary, extending our techniques to the dynamic setting is a non-trivial and
interesting direction for future work.

1.2 Distribution-Aware Query Equality Suppression

For a high-level overview of our techniques, see Figure 2.

1 We note that we modify the original Π+
bas scheme to have only O(1) client state for

fairness in our comparison since per-label counters are not required when the scheme
is used to encrypt a dictionary data structure.

5

A simple replication-based suppressor. Given infinite server storage and large
client state, we can easily use replication to build a query equality suppressor
for encrypted dictionary schemes as follows: At setup, the client creates infinite
replicas of every label-value pair and tags each replica with an incrementing
counter value. Then the client encrypts the replicated label-value pairs using
any efficient dictionary encryption scheme that leaks the query equality. Finally
the client stores one counter per label to track used replicas. To query a label,
the client uses the current counter for that label to query an unused replica
and then increments the counter by 1. It is easy to see that the resulting scheme
completely suppresses the query equality since the client only queries each replica
once. Additionally, the suppressed scheme has the same query complexity as the
query equality-leaking scheme used to encrypt the replicated dictionary.

Making server-side replication practical. In practice, however, the server cannot
store infinite replicas. This creates two challenges for us: (1) how many replicas
should we create given limited server storage? and (2) what do we do after the
client queries all the replicas? We address (1) using distribution-aware replication
to reduce storage and (2) using a leakage-free rebuild to reuse storage.

Distribution-aware replication. At setup, if we know the number of queries that
the client will make for each label, we can create exactly the required number of
replicas such that the client can always query an unused replica. In our suppres-
sor, we use the query distribution to estimate how many times a label will be
queried and set up the appropriate number of replicas. Intuitively, the number
of replicas created for a label is directly proportional to its query probability, so
labels with higher query probabilities are replicated more than labels with lower
query probabilities.

Leakage-free rebuild. After setup, the total number of replicas is fixed. Each
client query consumes one replica and eventually the encrypted dictionary will
run out of replicas. At this point it is useful to be able to refresh and reuse
the existing replicas so we can continue supporting queries without revealing
the query equality. Our suppressor uses a shuffle-based rebuild protocol to re-
encrypt the existing replicas at the end of every epoch so they can be reused.
This shuffle-based rebuild protocol is leakage-free because it does not introduce
any additional leakage during the rebuild of the encrypted structure.

Making client-side state sub-linear. The bigger challenge for the simple replication-
based suppressor is that the client must store and update one counter for each
label in the dictionary. This state is linear in the size of the dictionary, and hence
defeats the purpose of outsourcing the dictionary to the server. We now have
to deal with a multi-faceted challenge: how do we make the client state sub-
linear while maintaining the correctness and security of the replication-based
suppressor?

6

State as a function of time. Our main observation is that the client locally
maintains the current time step, and if we can compute the replica counters for
each label from that time step, we can reduce the client state. We then introduce
counter functions which take as input the client’s current time step and return a
(replica) counter. A counter function can be visualized as a simple step function,
shown in Figure 1.2 Each point on the x axis is a time step and each point on the
y axis is the corresponding counter. Notice the following properties of a counter
function:

– counter values are monotonically increasing, past values never repeat.
– the number of steps determines the number of values the counter function

takes.
– a counter value can repeat if two time steps map to the same ‘step’ of the

counter function.

The client uses the output of these counter functions to create replicas at setup
time, and to determine which replica to query at any given time t. Counter
functions can be represented compactly so this helps reduce the client state.
However, we still have two issues (1) if we use the same counter function for all
labels, then every label has the same number of replicas and we do not make
use of the query distribution; and (2) if two time steps map to the same counter
for the same label, then the query equality is leaked. Our next techniques will
address these issues.

time

CF1(time)

CF1(3) CF1(4)

(a)

time

CF2(time)

CF2(4) CF2(5)

(b)

Fig. 1. Step counter functions with step lengths 2 and 3 respectively. Some query
counters will map to the same replica depending on the step length. For example,
CF1(3) = CF1(4) = 2, and CF2(4) = CF2(5) = 2.

State as a distribution-aware function of time. In order to use the query dis-
tribution to create and query replicas, the client must first be able to store the

2 An initial sketch for Figure 1 was created using Generative AI.

7

query distribution. Since the query distribution could also be linear in the size
of the data structure, we are back where we started.

We then add the following techniques to support distribution-aware replica-
tion with small client state:

– sketching to create a compact queryable representation of the query distri-
bution,

– counter choice function to choose a counter function based on the query
probability of a label. Intuitively, labels with higher query probabilities
should be mapped to counter with shorter step lengths. This will ensure
that they have more replicas at setup time and that there are not many
time steps that map to the same replica counter.

One final challenge with distribution-aware replication is that we never know
what the actual sequence of queries will be. There is always a non-zero proba-
bility that the worst case sequence of accesses could occur — in our particular
case, that the counter values for a label at two different time steps collide and
map to the same replica — and lead to leaking the query equality. Then we must
add some last techniques to cover for the worst case.

Maintaining worst-case security. In the worst case, a label’s counter function
could repeat a counter value that was already queried. Since the input scheme
to our suppressor leaks the query equality, this would reveal the query equality
to the server and break security. Then we add the following:

– a replica cache to maintain correctness when the replica counter returned
was already used,

– dummy replicas to suppress query equality when the replica counter returned
was already used.

At query time, the client checks the replica cache before querying the server for
a replica. To keep the cache small, we remove used replicas from the cache when
the current step ends. When a replica is found in the cache the client queries an
unused dummy replica on the server in order to maintain security. These dummy
replicas are instantiated at setup and contribute to the total storage overhead of
replication. By adding these dummy replicas to cover the worst case, notice that
we have ensured that the suppressed scheme is secure regardless of the client’s
query sequence.

Putting it all together. Our query-equality suppressor ERS uses all the above
techniques to achieve practical efficiency. We describe ERS in detail in Section 6
and show how to instantiate ERS for Zipf query distributions in Section 7.

2 Related Work

We already discussed work on general leakage suppression [26, 46, 66, 67] and
replication-based dictionary constructions which mitigate query equality leakage
[29,54] so we focus here on other related work.

8

Technique Description Advantages Disadvantages

Replication creates replicas of ev-
ery (ℓ, v); queries a
new replica at each
time step

partially qeq-hiding uses server storage;
needs additional
client state to track
replicas

Counter
functions

(CFi)

functions mapping
each time-step to an
‘active’ replica

tracks active replica
with small client state

leaks qeq if an active
replica is queried
twice; needs ad-
ditional work for
security

Counter
choice

function
(chooseCF)

maps a query proba-
bility to a CF

utilizes server storage
better when using CFs

needs additional
client state for query
distribution; needs
additional work for
compact client state

Sketch represents query dis-
tribution compactly

utilizes client state
better when using
chooseCF, CFs

uses additional client
state

Replica
cache

stores queried repli-
cas on the client until
they expire

maintains correctness
for used replicas

uses additional client
state

Dummy
replicas

queried in lieu of real
replica when valid
replica is in cache

maintains security for
used replicas

uses additional server
storage

Leakage-free
rebuild

re-encrypts all repli-
cas after an epoch

allows reuse of repli-
cas without leaking
qeq

increases total com-
munication complex-
ity

Fig. 2. A summary of the techniques we use for our suppressor ERS. For a detailed
description, see Section 1.2.

9

S
ch
em

e
Client Storage

Server Storage

Online Query

Amortized Query

Online Rounds

Amortized Rounds

Query Latency

Supports Get?
Supports Edit or Update?

S
ecu

rity

Π
+b
a
s

[1
7
]

O
(1
)

O
(m

)
O
(1
)

O
(1
)

O
(1
)

O
(1
)

⊥
✓

✓
L
ea
k
s

d
size,o

eq

Σ
O
D
S

[6
9
]
O
(lo

g
m
)·

ω
(1
)

O
(m

)
O
(lo

g
2
m
)

O
(lo

g
2
m
)

O
(lo

g
m
)

O
(lo

g
m
)

⊥
✓

✓
L
ea
k
s
d
size

P
a
n
ca
k
e

[2
8
]

Ω
(m

)
O
(m

)
O
(B

)
O
(B

)
O
(1
)

O
(1
)

Ω
(1
) †

✓
✓

R
O
R
-C
D
D
A

Ω
b
a
s

(lo
g
2
sta

te)
O
(lo

g
2
m
)

O
(H

m
,s ·

m
)

O
(1
)

O (
lo
g
2
m

lo
g
lo
g
m)

O
(1
)

O (
lo
g
2
m

lo
g
lo
g
m)

⊥
✓

✗
L
ea
k
s
d
size

Ω
b
a
s

(m
1

s−
1
sta

te,
s
>

2
)

O
(m

1
s−

1
)

O
(H

m
,s ·

m
)

O
(1
)

O
(lo

g
m
)

O
(1
)

O
(lo

g
m
)

⊥
✓

✗
L
ea
k
s
d
size

F
ig
.
3
.
C
o
m
p
a
riso

n
o
f
o
u
r
su
p
p
resso

rs
in
itia

lized
u
sin

g
Π

+b
a
s
[1
7
]
a
n
d
a
Z
ip
f
q
u
ery

d
istrib

u
tio

n
to

ex
istin

g
en

cry
p
ted

d
ictio

n
a
ry

sch
em

es,
w
h
ere

m
is

th
e
n
u
m
b
er

o
f
la
b
el-va

lu
e
p
a
irs

in
th
e
in
p
u
t
d
ictio

n
a
ry

a
n
d
s
is

th
e
p
a
ra
m
eter

o
f
th
e
Z
ip
f
d
istrib

u
tio

n
.
W
e
u
se
†
to

d
en

o
te

a
n

estim
a
te

b
a
sed

o
n
th
e
d
eta

ils
p
rov

id
ed

in
th
e
p
a
p
er

a
n
d
th
e
a
rtifa

ct.

10

Structured encryption. Structured encryption was proposed by Chase and Ka-
mara [19] as a generalization of searchable symmetric encryption (SSE) which
was introduced by Song, Wagner and Perrig [63]. The first optimal-time construc-
tions and the standard security definition for SSE was proposed by Curtmola,
Garay, Kamara and Ostrovsky [21]. STE schemes have since been improved along
various dimensions including expressiveness [15,24,25,37,58], efficiency [17,21],
dynamism [6, 39, 40], concurrency [2, 3, 13], security [5, 9, 12, 34, 62, 65, 68], and
locality / page efficiency [7, 11,16,22].

Cryptanalysis. Leakage attacks have been designed against a variety of en-
crypted search algorithms, including solutions based on property preserving en-
cryption, structured encryption and oblivious RAM. With respect to searchable
and structured encryption, specifically, several leakage patterns have been stud-
ied including the query equality pattern [41, 48, 53, 57], the response identity
pattern [10, 14, 32, 35, 50, 70], the volume pattern [10, 30, 31, 33, 49], or combi-
nations of multiple patterns [55] under a variety of assumptions (see [42] for a
recent survey).

Distribution-aware design. While distribution-aware design has been used previ-
ously in the literature, most notably in Pancake [29] and Waffle [54], in this work
we leverage distribution-awareness, distribution leakage and replication to design
a general-purpose suppressor for encrypted dictionary schemes. Distribution-
aware techniques have also recently been used to improve the efficiency of Private
Information Retrieval (PIR) for skewed popularity distributions [52].

Oblivious RAM and data structures. An Oblivious RAM (ORAM) scheme can be
viewed as a qeq-hiding encrypted data structure, usually an array or a dictionary.
For example, the original squareroot ORAM [27] can be viewed as a qeq-hiding
encrypted array and Path ORAM [64] can be viewed as a qeq-hiding array or
dictionary. However, the closest related work to ours is the work on oblivious
data structures, which tailors tree-based ORAM techniques to create specific
oblivious data structures, including oblivious dictionaries [69].

Oblivious sorts and shuffles. In this paper, we propose a shuffle-based rebuild
compiler. Our compiler can be instantiated using any oblivious shuffle, such as
the Melbourne Shuffle [56] or CacheShuffle [59]. In our query equality suppres-
sor we instantiate the shuffle using CacheShuffle to leverage its tradeoffs between
small client state and total communication complexity. In particular, CacheShuf-
fle uses O(N logS N) communication to obliviously shuffle an array of sizeN with
O(S) client state, which allows us to make this tradeoff in our final suppressor.
Existing rebuild compilers in the literature such as the RBC [46] instantiate
an oblivious shuffle using an oblivious sort such as the Ajtai-Komlos-Szemeredi
sorting network [4] or Batcher sort [8].

11

3 Preliminaries

Notation. We denote the security parameter as k, and all algorithms run in
time polynomial in k. The set of all binary strings of length n is denoted as
{0, 1}n, and the set of all finite binary strings as {0, 1}∗. [n] is the set of integers
{1, . . . , n}, and 2[n] is the corresponding power set. The output x of an algorithm
A is denoted by x ← A. Given a sequence v of n elements, we refer to its ith
element as vi or v[i]. If S is a set then #S refers to its cardinality. If s is a string
then |s|2 refers to its bit length.

The word RAM. Our model of computation is the word RAM. In this model,
we assume memory holds an infinite number of w-bit words and that arithmetic,
logic, read and write operations can all be done in O(1) time. We denote by
|x|w the word-length of an item x; that is, |x|w = |x|2/w. Here, we assume that
w = Ω(log k).

Query distributions. In this paper we will use QDS to denote a discrete probabil-
ity distribution over the query space QDS of the data structure DS. We denote by
QDS a random variable distributed according to QDS and we write QDS ∼ QDS.
In the presence of multi-dimensional random variable, we denote by Qn

DS the
sequence of n random variables (QDS,1, · · · ,QDS,n), for n ∈ N≥1. When DS and
n are clear from context, we drop the subscript DS and superscript n.

Probabilities. Given a discrete random variable X, we denote its probability
mass function by pX(x) or p(x) when X is clear. Given two discrete random
variables X and Y , we denote the distribution of X conditioned on Y = y for
some y over the range of Y , by pX(x | y) or p(x | y) when X is clear.

Abstract data types. An abstract data type specifies the functionality of a data
structure. Examples include sets, dictionaries (also known as key-value stores
or associative arrays) and graphs. The operations associated with an abstract
data type fall into one of two categories: query operations, which return infor-
mation about the objects; and update operations, which modify the objects. If
the abstract data type supports only query operations it is static, otherwise it
is dynamic.

We model a data type T as a collection of four spaces: the object space
D = {Dk}k∈N, the query space Q = {Qk}k∈N, the response space R = {Rk}k∈N
and the update space U = {Uk}k∈N. We also define the query map qu : D×Q→ R
and the update map up : D×U→ D to represent operations associated with the
dynamic data type. We refer to the query and update spaces of a data type as
the operation space O = Q ∪ U. For a static data type that does not support
updates, O = Q. When specifying a data type T we will often just describe its
maps qu, up from which the object, query, response and update spaces can be
deduced. The spaces are ensembles of finite sets of finite strings indexed by the
security parameter. We assume that R includes a special element ⊥ and that D
includes an empty object d0 such that for all q ∈ Q, qu(d0, q) = ⊥.

12

Data structures. A type-T data structure is a representation of data objects in
D in some computational model (as mentioned, here it is the word RAM). Typ-
ically, we assume that there exists an efficient algorithm Query that computes
the function qu. For example, the dictionary type can be represented using vari-
ous data structures depending on which queries one wants to support efficiently.
Hash tables support Get and Put in expected O(1) time whereas balanced bi-
nary search trees support both operations in worst-case O(log n) time. We use
the notation DS ≡ d to denote that the data structure DS instantiates the data
object d. This implies that for all q ∈ Q, qu(d, q) = Query(DS, q).

Data structure logs. Given a structure DS that instantiates an object d, we will
use the sequence of update operations needed to create a new structure DS′ that
also instantiates d. We refer to this as the data structure log of DS and assume
the existence of an efficient algorithm Log that takes as input DS and outputs a
tuple of update operations (u1, . . . , un) such that adding u1, . . . , un to an empty
structure results in some DS′ ≡ d.

Dictionaries. A dictionary structure DX of capacity n holds a collection of n
label/value pairs {(ℓi, vi)}i≤n and supports get and put operations. We write
vi := DX[ℓi] to denote getting the value associated with label ℓi and DX[ℓi] := vi
to denote the operation of associating the value vi in DX with label ℓi. Given a
query distribution Q over the support space QDX, we define Q ◦

= (pℓ)ℓ∈QDX
.

Priority queues. A priority queue Q of capacity n holds n elements, where each
element ei is sorted according to its priority value pi. A min-priority queue
supports add, find minimum, and delete minimum operations. A max-priority
queue supports add, find maximum, and delete maximum operations.

Cryptographic protocols. We denote by (outA, outB) ← ΠA,B(X;Y) the execu-
tion of a two-party protocol Π between parties A and B, where X and Y are the
inputs provided by A and B, respectively; and outA and outB are the outputs
returned to A and B, respectively.

4 Definitions

4.1 Structured Encryption

In this work, we consider both standard and distribution-aware rebuildable STE
schemes. Both types of constructions can be captured with the following slight
modification to the standard STE syntax to include the query distribution Q.

Definition 1 (Structured encryption). A type-T structured encryption scheme
STE = (Setup,OperateC,S,RebuildC,S) consists of an algorithm and two two-
party protocols that work as follows:

13

– (K, st,EDS) ← Setup(1k, n,Q,DS): is a probabilistic polynomial-time algo-
rithm that takes as input a security parameter 1k, a query capacity n ≥ 1, the
description of a query distribution Q, and a type-T structure DS. It outputs
a secret key K, a state st and an encrypted structure EDS.

–
(
st′, r;EDS′

)
← OperateC,S

(
K, st, op;EDS

)
: is a two-party protocol executed

between a client and a server where the client inputs a secret key K, a state
st and an operation op and the server inputs an encrypted structure EDS.
The client receives as output an updated state st′ and a response r ∈ R ∪ ⊥
while the server receives an updated encrypted structure EDS′.

–
(
K ′, st′;EDS′

)
← RebuildC,S

(
K, st;EDS

)
: is a two-party protocol executed

between a client and a server where the client inputs a secret key K and a
state st and the server inputs an encrypted structure EDS. The client receives
as output an updated secret key K ′ and state st′ and the server receives an
updated encrypted structure EDS′.

Note that the syntax of a standard rebuildable STE scheme can be recovered
by setting Q := ⊥. For a semi-dynamic STE scheme, Operate could be either an
Add or a Query protocol, and for a static STE scheme Operate is always a Query
protocol.

Security. We now slightly adapt the standard notion of adaptive semantic se-
curity for rebuildable STE schemes [19, 21] to the case of distribution-aware
schemes. We use pattS, pattO, pattR to refer to the setup, operation, and rebuild
leakages respectively.

Definition 2 (Security). Let STE = (Setup,OperateC,S,RebuildC,S) be a struc-
tured encryption scheme and consider the following probabilistic experiments
where C is a stateful challenger, A is a stateful adversary, S is a stateful simu-
lator, Λ = (pattS, pattO, pattR) is a leakage profile, n ≥ 1 is a query capacity, Q
is a distribution, and z ∈ {0, 1}∗:

RealSTE,C,A(k): given z, n, and Q, the adversary A outputs a structure DS and
receives EDS from the challenger, where (K, st,EDS)← Setup(1k, n,Q,DS).
A then adaptively chooses a polynomial-size sequence of operations (op1, . . .
opm). For all 1 ≤ i ≤ m, the challenger and adversary do the following:
1. if opi is a query or an update opi ∈ O, they execute OperateC,A

(
K, st, opi;

EDS
)
;

2. if opi is a rebuild operation, they execute RebuildC,A
(
K, st;EDS

)
.

Finally, A outputs a bit b that is output by the experiment.
IdealSTE,A,S(k): given z, n, and Q, the adversary A outputs a structure DS.

Given pattS(DS), the simulator returns an encrypted structure EDS to A. A
then adaptively chooses a polynomial-size sequence of operations (op1, . . . , opm).
For all 1 ≤ i ≤ m, the simulator and the adversary do the following:
1. if opi is a query or an update opi ∈ O, they execute OperateS,A

(
pattO(DS,

op1, op2, . . . , opi);EDS
)
;

2. if opi is a rebuild operation, they execute RebuildS,A
(
pattR(DS);EDS

)
.

14

Finally, A outputs a bit b that is output by the experiment.

We say that STE is Λ-secure if there exists a ppt simulator S such that for all
ppt adversaries A, for all n ≥ 1, for all Q and all z ∈ {0, 1}∗,

|Pr [RealSTE,C,A(k) = 1]− Pr [IdealSTE,A,S(k) = 1]| ≤ negl(k).

Leakage. We use the following leakage patterns in this work. Let T = (qu :
D×Q→ R, up : D×U→ D) be a dynamic data type. We assume that updates
can be written as query/response pairs, i.e., U = Q× R.

– the data size pattern is the function family dsize = {dsizek}k∈N with dsizek :
Dk → N such that dsizek(d) = |d|w;

– the query equality pattern is the function family qeq = {qeqk,t}k,t∈N with

qeqk,t : Dk ×Qt
k → {0, 1}t×t such that qeqk,t(d, q1, . . . , qt) = M , where M is

a binary t × t matrix such that for queries qi and qj , M [i, j] = 1 if qi = qj
and M [i, j] = 0 otherwise;

– the operation equality pattern is the function family oeq = {oeqk,t}k,t∈N with

oeqk,t : Dk×Ot
k → {0, 1}t×t such that oeqk,t(d, op1, . . . , opt) = M , where M

is a binary t× t matrix such that for operations opi = qi or ui = (qi, ri) and
opj = qj or uj = (qj , rj), M [i, j] = 1 if qi = qj and M [i, j] = 0 otherwise.

Leakage-free rebuild. We say that an STE scheme STE with leakage profile Λ =
(pattS, pattO, pattR) has a leakage-free rebuild protocol if for all d ∈ D, for all
DS ≡ d, pattR(DS) = ⊥.

Correctness. We also modify the standard notion of correctness for rebuildable
STE schemes to include the query distribution Q. For an encrypted data struc-
ture EDS, we say that EDS instantiates the data object d ∈ D if for all q ∈ Q,
Query((K, st, q);EDS) outputs qu(d, q) to the client, where K and st are the key
and the state for EDS. We denote this as EDS ≡ d.

Definition 3 (Correctness). Let STE = (Setup,QueryC,S,RebuildC,S) be a
rebuildable structured encryption scheme. We say that STE is correct if it satisfies
the following:

– (static correctness) for all k ∈ N, for all n ∈ N, for all Q, for all d ∈ D, for
all DS that instantiate d, it holds that:

Pr [EDS ≡ d] ≥ 1− negl(k),

where (K, st,EDS)← Setup(1k, n,Q,DS).
– (dynamic correctness) for all k ∈ N, for all n ∈ N, for all Q, for all d ∈ D,

for all EDS that instantiate d, for all u ∈ U, it holds that:

Pr
[
EDS′ ≡ up(d, u)

]
≥ 1− negl(k),

where
(
st′;EDS′

)
← UpdateC,S

(
K, st, u;EDS

)
.

15

– (rebuild correctness) for all k ∈ N, for all n ∈ N, for all d ∈ D, for all EDS
that instantiate d, it holds that:

Pr
[
EDS′ ≡ d

]
≥ 1− negl(k),

where
(
K ′, st′;EDS′

)
← RebuildC,S

(
K, st;EDS

)
and K, st are the key and

the state of EDS.

4.2 Query Distribution Sketches

As discussed in section 1, our suppressor uses a compact representation of the
query distribution on the client. This is achieved using a sketching scheme for
the query distribution which we define below.

Definition 4 (Sketching scheme). A sketching scheme ∆ = (SketchDist,
QueryDist) consists of two probabilistic polynomial time algorithms that work
as follows:

– sketch← SketchDist(Q) takes as input a discrete distribution Q over a finite
set Q and returns a sketch of the distribution sketch.

– p̃ ← QueryDist(sketch, q) takes as input a sketch of the distribution Q and
an element q ∈ Q and returns a probability p̃ ∈ R.

4.3 Oblivious Shuffles

Our suppressor uses a shuffle-based rebuild protocol as a key building block for
security. We define an encrypted shuffle and its security properties below.

Definition 5. An encrypted shuffle OShuffle = (Setup,ShuffleC,S,Dec) consists
of two algorithms and a protocol that work as follows:

– (K,EA) ← Setup(1k,A): is a probabilistic polynomial time algorithm that
takes as input a security parameter and an input array A and outputs a
secret key K and an encrypted array EA such that EA ≡ A.

– (K ′;EA′) ← ShuffleC,S(K,π;EA): is a two-party protocol where the client
inputs the secret key K and a permutation π and the server inputs an en-
crypted array EA. The client receives as output an updated secret key K ′ and
the server receives an updated encrypted array EA′

– A[i] ← Dec(K,EA[i]) is a probabilistic polynomial time algorithm that takes
as input the secret key and an element of the encrypted array and decrypts
it to output the corresponding element of the input array.

Security. For security, we require that the encrypted shuffle satisfy obliviousness.
We now state a simulation-based security notion for an oblivious shuffle protocol.

Definition 6 (Obliviousness). Let OShuffle = (Setup,ShuffleC,S,Dec) be an
encrypted shuffle and consider the following probabilistic experiments where C is
a stateful challenger, A is a stateful adversary, and S is a stateful simulator,
and z ∈ {0, 1}∗:

16

RealOShuffle,C,A(k): given z, the adversary A outputs an array A and receives
EA from the challenger, where (K,EA) ← Setup(1k,A). A then chooses a
permutation π over the domain [n] where n = #A. The challenger and the
adversary execute ShuffleC,S(K,π;EA). Finally, A outputs a bit b that is
output by the experiment.

IdealOShuffle,A,S(k): given z, the adversary A outputs an array A. Given n =
#A, the simulator returns an encrypted structure EA to A. A then chooses a
permutation π over the domain [n]. The simulator and the adversary execute
ShuffleS,A

(
⊥;EA

)
; Finally, A outputs a bit b that is output by the experiment.

We say that OShuffle is oblivious if there exists a ppt simulator S such that for
all ppt adversaries A, for all n ≥ 1, and all z ∈ {0, 1}∗,

|Pr [RealOShuffle,C,A(k) = 1]− Pr [IdealOShuffle,A,S(k) = 1]| ≤ negl(k).

Correctness. For correctness, we require that the encrypted array EA′ output by
the ShuffleC,S protocol is such that EA′ ≡ A′ where A′[π(i)] = A[i].

5 An Oblivious Shuffle-Based Rebuild Compiler

In this section, we describe a rebuild compiler SRC that uses an oblivious shuf-
fle as a building block. The compiler converts any semi-dynamic type-T struc-
tured encryption scheme into a static rebuildable type-T structured encryption
scheme. We provide the pseudocode for SRC in Figure 4.

Overview. The SRC takes as input a semi-dynamic STE scheme σDS and outputs
a static rebuildable STE scheme ΣDS. SRC works by creating an additional
encrypted array RAM containing all the update operations required to instantiate
the data structure DS. The server stores this array alongside the encrypted data
structure EDS. When the client wants to rebuild EDS, it executes the oblivious
shuffle protocol over the entries of RAM to generate a shuffled array RAM′.
Finally, the client uses the updates in RAM′ to create a new EDS′ that also
instantiates DS.

Detailed description. During Setup, the client initializes an empty array RAM
and a query counter gcnt. It then generates the sequence of updates u1, . . . , um

used to instantiate DS using Log(DS), encrypts each update ui and stores it
in RAM[i]. Next, the client runs the setup of the oblivious shuffle using RAM.
Finally, the client runs the setup of σDS to generate the structure EDS0. The
server stores both EDS0 and RAM as the encrypted data structure EDS.

During query, if gcnt = n, where n is the epoch length, the client aborts.
Otherwise the client increments the query counter and runs the query protocol
QueryC,S of the scheme σDS.

During rebuild, the client samples a random permutation π over the space
[m] where m = #DS. The client and the server execute the ShuffleC,S protocol
to shuffle RAM according to π and generate RAM′. Then the client sets up an

17

Let σDS = (Setup,Query,Add) be a semi-dynamic type-T structured encryption
scheme, let SKE = (Gen,Enc,Dec) be a symmetric-key encryption scheme, and
let OShuffle = (Setup,Shuffle,Dec) be an oblivious shuffle. Consider the static
rebuildable type-T structured encryption scheme ΣDS = (Setup,Query,Rebuild)
defined as follows:

– Setup(1k, n,DS)
1. initialize an empty array RAM and a counter gcnt := 0;
2. sample an encryption key KRAM ← SKE.Gen(1k);
3. generate the sequence (u1, u2, · · · , um)← Log(DS), where m = #DS.
4. for i ∈ m, set RAM[i] = SKE.Enc(KRAM, ui);
5. compute (KShuffle,RAM)← OShuffle.Setup(1k,RAM);
6. compute (KDS, stDS,EDS0)← σDS.Setup(1

k,DS);
7. set K = (KRAM,KShuffle,KDS), set st := (stDS, gcnt) and set EDS :=

(EDS0,RAM)
8. output (K, st,EDS);

– QueryC,S(K, st, q;EDS)
1. C parses K as (KRAM,KShuffle,KDS) and st as (stDS, gcnt);
2. if gcnt = n, abort, else set gcnt := gcnt+ 1;
3. C and S execute (r, stDS;⊥)← σDS.QueryC,S(KDS, stDS, q;EDS);
4. C sets st := (stDS, gcnt)
5. C outputs (r, st) and S outputs ⊥;

– RebuildC,S(K, st;EDS)
1. C parses K as (KRAM,KShuffle,KDS) and st as (stDS, gcnt);
2. S parses EDS as (EDS0,RAM);
3. C samples a permutation π over [m] uniformly at random;
4. C and S execute (K′

Shuffle;RAM
′)← OShuffle.ShuffleC,S(KShuffle, π;RAM);

5. C and S execute (K′
DS, st

′
DS;EDS

′)← σDS.Setup(1
k,⊥);

6. for i ∈ [m],
(a) S sends RAM′[i] to C;
(b) C executes ci ← OShuffle.Dec(KShuffle,RAM

′[i]);
(c) C executes ui ← SKE.Dec(KRAM, ci);
(d) C and S execute (st′DS;EDS

′)← σDS.AddC,S(K
′
DS, st

′
DS, ui;EDS

′);
7. C sets stDS := st′DS, gcnt := 0, KDS := K′

DS and KShuffle := K′
Shuffle;

8. S sets EDS = (EDS′,RAM′) and removes EDS0 and RAM.

Fig. 4. The shuffle-based rebuild compiler SRC.

18

empty encrypted structure EDS′ on the server. It downloads each entry of RAM′,
decrypts it, and performs the corresponding update on EDS′ using the AddC,S

protocol of σDS. After the client performs all the updates, it reinitializes its local
state and the server stores EDS = (EDS′,RAM′)

Security. We now show that if the input structured encryption scheme leaks
only the total size of the structure and the operation equality pattern on every
operation, then the scheme output by our compiler is a static STE scheme with
a leakage-free rebuild. We state the security theorem and defer its proof to the
full version of our paper.

Theorem 1. If σDS is an L-secure semi-dynamic STE scheme with leakage pro-
file Lσ = (pattS, pattO) = (dsize, oeq), OShuffle = (Setup,Shuffle,Dec) is an
oblivious shuffle, and SKE = (Gen,Enc,Dec) is a CPA-secure encryption scheme,
then the scheme ΣDX output by SRC is an LΣ-secure static rebuildable STE
scheme with leakage profile LΣ = (pattS, pattQ, pattR) = (dsize, qeq,⊥).

Efficiency. SRC introduces an additional server storage of O(#DS) to store the
encrypted RAM. It also introduces communication and round complexity de-
pending on the underlying oblivious shuffle protocol. If we instantiate OShuffle
using CacheShuffle and the client has state = ω(log(#DS)), then the total com-
munication complexity is O(#DS · logstate #DS), and therefore the worst case
round complexity must also be O(#DS · logstate #DS).

6 ERS: A Distribution-Aware Query Equality Suppressor

We now describe our distribution-aware query equality suppressor ERS. The
pseudocode for our suppressor is given in Figures 5 and 6.

Overview. Our suppressor ERS takes as input a static rebuildable encrypted
dictionary scheme ωDX and outputs a static encrypted dictionary ΩDX with no
query equality leakage. The suppressor also takes as input a query distribu-
tion Q over the label space of the input dictionary DX, a query epoch length
n, counter functions CF1,CF2, . . . ,CFλ with ranges ρ1, ρ2, . . . , ρλ respectively, a
counter choice function chooseCF, a sketching scheme ∆, and an upper limit M
on the size of the client-side replica cache. We now describe the setup, query,
and rebuild of our suppressor in detail.

Setup. During setup, the client sets up all the replicas and initializes its state.

– (setup replicas) The client creates an empty dictionary DX to store replicas
and sets its time counter gcnt to 0. For each label ℓ, the client uses the query
probability pℓ and the counter choice function to select a counter function
CFj . It then creates ρj replicas of label ℓ with counter values 1, 2, . . . , ρj .
Each replicated label is assigned the value v := DX[ℓ]. After creating all the
label replicas, the client creates n dummy replicas where n is the length of
the query epoch. All the replicas are added to DX and encrypted using the
input static dictionary scheme ωDX.

19

– (initialize state) Finally, the client initializes its own state by computing
sketch of Q, and initializing a dictionary DXcache and a min-priority queue
Qcache for the replica cache. The client’s state consists of the time counter,
the sketch, the cache dictionary and queue, and any state output by the
input encrypted dictionary scheme ωDX;

Query. During query, the client queries a replica, updates the cache, and clears
expired entries from the replica cache.

– (query replica) If the time counter is larger than the epoch length, the client
rebuilds the encrypted dictionary and continues. The client then increments
the time counter gcnt and checks the cache dictionary for the label ℓ.
If the cache contains a replica for the label (or) the cache has M entries, the
client queries a dummy replica with the current value of gcnt.
If the cache does not contain a replica and the cache is smaller than M , the
client does the following to compute the correct replica: (1) use sketch to
retrieve the query probability p̃ℓ, (2) evaluate the counter choice function on
p̃ℓ to get the index j̃ and the counter function CFj̃ .
Finally, it evaluates CFj̃(gcnt) to compute the counter idx and queries for
ℓ ∥ idx.

– (update cache) When the client receives a value from the encrypted dictio-
nary, it computes the step length ⌈n/ρj̃⌉ for the counter function CFj̃ and
sets the expiration time for the value to be t = gcnt + ⌈n/ρj̃⌉ − 1. It adds
the label-value pair (ℓ, r) to DXcache, and adds the label ℓ to the min queue
Qcache with priority t.

– (clear cache) The client then checks the minimum priority element of Qcache.
If the element expired during or before the current time, the client removes
it from both Qcache and DXcache.

Rebuild. After every n queries, the client executes the rebuild protocol. First,
it executes the rebuild protocol of the input dictionary scheme. The client then
re-initializes the time counter, the replica cache, and the state of the encrypted
dictionary. The sketch of the input distribution remains unchanged.

6.1 Security

In this section we prove the security of ERS. ERS takes as input a static
encrypted rebuildable dictionary scheme ωDX with the leakage profile Lω =
(dsize, qeq,⊥) and outputs a static rebuildable dictionary scheme ΩDX with the
query equality pattern fully suppressed.

Intuitively, the security proof goes through because ERS ensures that the
client always queries a fresh replica. As long as the input dictionary scheme
leaks only the query equality, the output scheme will have no query leakage
since all the queries are unique. More formally, we state and sketch the proof of
the following security theorem for ΩDX.

20

Let Q be a probability distribution over the space QDX, epoch length n ∈ N≥1,
CF1, . . . ,CFλ be counter functions where CFj : [n] → [ρj] for all j ∈ [λ],
λ ∈ [#QDX], chooseCF be a counter choice function chooseCF : [0, 1] → [λ],
∆ = (SketchDist,QueryDist) be a sketching scheme, and cache size limitM ∈ N≥1.
Let ωDX = (Setup,Get,Rebuild) be a static rebuildable dictionary encryption
scheme and consider the scheme ΩDX = (Setup,Get,Rebuild) that works as fol-
lows:

– Setup(1k, n,Q,DX)
1. parse Q as (pℓ)ℓ∈QDX ;
2. initialize empty dictionary DX and a counter gcnt := 0;
3. for each label ℓ in QDX:

(a) compute j := chooseCF(pℓ);
(b) let v := DX[ℓ];
(c) for idx ∈ [ρj], set DX[ℓ ∥ idx] := v;

4. for i := 1, 2, . . . n, set DX[⊥ ∥ i] := ⊥;
5. compute sketch← ∆.SketchDist(Q);
6. compute (K, stdx,EDX)← ωDX.Setup(1

k, n,DX);
7. initialize empty dictionary DXcache;
8. initialize empty min-priority queue Qcache;
9. set st := (gcnt, sketch,DXcache,Qcache, stdx);

10. set EDX := EDX;
11. output (K, st,EDX).

– GetC,S(K, st, ℓ;EDX)
1. C parses st as (gcnt, sketch,DXcache,Qcache, stdx);
2. if gcnt > n,

(a) C and S execute (K′, st′;EDX′)← ΩDX.Rebuild(K, st;EDX);
(b) C sets K := K′ and st := st′;
(c) C parses st′ as (gcnt, sketch,DXcache,Qcache, stdx);
(d) S sets EDX := EDX′;
(e) continue;

3. C sets gcnt := gcnt+ 1;
4. C sets rcache := DXcache[ℓ];
5. if rcache ̸= ⊥,

(a) C sets r := rcache;
(b) C sets ℓ′ := ⊥ ∥ gcnt;
else if rcache = ⊥ and #DXcache ≥M ;
(a) C sets ℓ′ := ⊥ ∥ gcnt;
else,
(a) C computes p̃ℓ ← ∆.QueryDist(sketch, ℓ);
(b) C computes j̃ := chooseCF(p̃ℓ);
(c) C sets ℓ′ := ℓ ∥ idx where idx := CFj̃(gcnt);

Fig. 5. A storage-efficient replication-based query equality suppressor ERS.

21

– GetC,S(K, st, ℓ;EDX)
6. C and S execute (rdx, stdx;⊥)← ωDX.GetC,S(K, stdx, ℓ

′;EDX);
7. if rdx ̸= ⊥,

(a) C sets r := rdx;
(b) C computes j̃ := chooseCF(p̃ℓ);

(c) C computes t = gcnt+ ⌈ n
ρj̃
⌉ − 1;

(d) C sets DXcache[ℓ] := r;
(e) C runs Qcache.Add(ℓ, t);

8. C runs (ℓ′, t′)← Qcache.FindMin()
9. while t′ ≤ gcnt:

(a) C runs Qcache.DelMin();
(b) C sets DXcache[ℓ

′] := ⊥;
(c) C runs (ℓ′, t′)← Qcache.FindMin();

10. C sets st := (gcnt, sketch,DXcache,Qcache, stdx);
11. C outputs (r, st) and S outputs ⊥.

– RebuildC,S(K, st;EDX)
1. C parses st as (gcnt, sketch,DXcache,Qcache, stdx);
2. C and S execute (K′, st′dx;EDX

′)← ωDX.RebuildC,S(K, stdx;EDX);
3. C sets gcnt := 0;
4. C sets DXcache to an empty dictionary;
5. C sets Qcache to an empty min-priority queue;
6. C sets st′ := (gcnt, sketch,DXcache,Qcache, st

′
dx)

7. C outputs (K′, st′) and S outputs EDX′.

Fig. 6. A storage-efficient replication-based query equality suppressor ERS (contin-
ued).

Theorem 2 (Security of ΩDX). If ωDX is a static rebuildable L-secure en-
crypted dictionary scheme with Lω = (pattS, pattQ, pattR) = (dsize, qeq,⊥), then
the scheme ΩDX output by ERS is LΩ-secure where LΩ = (pattS, pattQ, pattR) =
((dsize,Q),⊥,⊥).

Proof Sketch. We begin by noticing that ERS transforms queries such that every
query in an epoch is unique. Now, let Sω be the simulator that exists by the
adaptive security of ωEDS. We construct a simulator SΩ for the scheme ΩDS as
follows:

– Simulating Setup: Given #DX = dsize(DX) and Q, compute ρ1, . . . , ρ#DX.

Let ρ := Σ#DX
i=1 ρi and run EDX← Sω(ρ+ n). Output EDX to the adversary.

Set gcnt := 0.
– Simulating Query3: If gcnt > n, simulate Rebuild, else set gcnt = gcnt + 1.

Given ⊥, for any sequence of queries q1, . . . , qn, use Sω(In) to simulate the
adversary’s view, where In is the n× n identity matrix.

3 Note that the client (and therefore the adversary) always queries labels that exist in
the support of Q. Alternatively, both the input and output schemes leak rlen, where
rlen reveals the presence/absence bit of a queried label.

22

– Simulating Rebuild: Given ⊥, run Sω(⊥) to simulate the adversary’s view of
rebuilding EDS. Set gcnt := 0.

We now show that the RealΩ,C,A experiment is computationally indistinguish-
able from the IdealΩ,A,S experiment using the following games.

– Game0: is the same as the RealΩ,C,A experiment.

– Game1: is the same as Game0 except the setup of ωDS for DS is replaced
by the simulated setup Sω(ρ+ n); every query sequence q1, . . . , qn to ωDS is
replaced by the simulated query sequence Sω(In); and all rebuilds of ωDS are
replaced by simulated executions Sω(⊥).

For Game1, notice that: (1) the simulator SΩ computes (ρ+n), which is the setup
leakage dsize(DX) for Sω, (2) the query equality leakage qeq(q1, . . . , qn) = In
when only unique query operations are possible, and (3) the rebuild protocol is
leakage-free and can be simulated with no leakage. Then Game1 must be indis-
tinguishable from Game0 by the (dsize, qeq,⊥)-security of ωDS. Finally, Game1 is
the same as the IdealΩ,A,S experiment and our proof is complete.

6.2 Efficiency and Correctness

We now discuss the storage and communication complexity of ΩDX. We assume
that the rebuild protocol of the input dictionary scheme is instantiated using
the shuffle-based compiler SRC.

Server storage. For each label in the dictionary ℓi the number of replicas is equal
to the number of steps in the counter function CFi. Since CFi : [n]→ [ρi], ℓi has
at most ρi replicas. Additionally, ERS adds n dummy replicas, and SRC adds a
RAM which has the same size as the replicated dictionary.

The server storage is then:

storageΩ(DX) = O
(m∑

i=1

ρi + n
)
. (1)

Client state. The client state is used to maintain the current time counter,
the sketch of the query distribution, the replica cache, and the state for the
underlying encrypted dictionary scheme. The client state is also used during the
shuffle-based rebuild. The total client state is then:

stateΩ(DX) =
(
O(1)+ state∆(Q)+ statecache(Q)+ stateω(DX)+ stateShuffle(DX)

)
.

(2)

23

Online communication complexity. The online communication complexity of Ω
is the same as that of the underlying encrypted dictionary scheme ω. If ocommΩ

is the online communication complexity of Ω, then for any query q:

ocommΩ(q) = ocommω(q). (3)

Amortized communication complexity. When we compute the amortized com-
munication complexity for one epoch, we account for the complexity of rebuild-
ing the replicated dictionary DX. The total size of DX depends on the counter
functions chosen for the query distribution Q. Then the total communication
complexity for one epoch is:

commΩ(q1, . . . , qn) =

n∑
i=1

ocommω(qi) + commShuffle(DX). (4)

Finally, we divide by n to get the amortized communication complexity for each
query:

commΩ(q) =
1

n
·
(n∑

i=1

ocommω(qi) + commShuffle(DX)
)
. (5)

Amortized round complexity. The total number of communication rounds for
one epoch is the totarounds for n queries using the input encrypted dictionary
scheme and the rounds for the shuffle-based rebuild of the replicated dictionary.
Then we have the amortized round complexity for one query:

roundsΩ(q) =
1

n
·
(n∑

i=1

roundsω(qi) + roundsShuffle(DX)
)
. (6)

Correctness. Ω always returns the correct response to a queried label, except
in the case where the replica cache has reached its maximum size M and the
queried label is not found in the cache. We bound the probability of this event by
upper bounding the size of the replica cache at every time step. More precisely,
we prove the following theorem that upper bounds the size of the replica cache
for a general query distribution Q. Given this theorem, we can show that ΩDX is
correct with high probability if we can show that the cache size does not exceed
M with high probability for the query distribution Q with counter functions
CF1, . . . ,CFm. We defer the proof to the full version of our paper.

Theorem 3 (Cache size bound). Let p1, p2, . . . , pm be the p.m.f of a discrete
query distribution Q and let T1, . . . , Tm be the step lengths of the counter func-
tions CF1, . . . ,CFm respectively. For any epoch length n ≥ 1, if Ti ∈ [n− 1] and
Ti · pi ≪ 1, then for any δ > 0:

Pr

[
Y (t) ≥ (1 + δ) ·

m∑
i=1

Ti · pi

]
≤ exp

(
−δ2

2 · (1 + δ)
·

m∑
i=1

Ti · pi

)
,

24

where Y (t) is a random variable representing the size of the cache at time 1 ≤
t ≤ n.

When analyzing the concrete efficiency of ERS we found it useful to narrow
the scope to a specific family of distributions. We chose the Zipf distribution be-
cause of its applicability in practice. In the next section, we discuss the efficiency
and correctness of ERS when the query distribution Q is a Zipf distribution.

7 ERS: The Zipf Case

A discrete random variable X is Zipf distributed with parameter s ∈ R≥0, if for
all j ∈ {1, . . . ,m},

Pr [X = j] =
j−s

Hm,s
,

where Hm,s = Σm
i=11/j

s is the general form of the harmonic number. We also
assume the existence of a permutation π : QDX → [m] that maps every query in
the query space QDX to a particular rank in [m]. We denote by Zm,s the Zipf
distribution over a query space of size m with parameter s.

Sketching scheme. Notice that under the Zipf distribution, each label in QDX

maps to a unique probability and that the bulk of the mass is located within
the first few ranks. We leverage this property to build a simple scheme ∆zipf

sk =
(SketchDist,QueryDist) that only keeps track of the top-κ queries, for κ ∈ [m].
The SketchDist algorithm takes as input the Zipf distribution Zm,s and outputs

sketch :=

(
π−1(1), · · · , π−1(κ)

)
.

The QueryDist algorithm takes as input the label ℓ and outputs either the correct
probability if the label is one of the top-κ labels or 0 otherwise. More precisely,
we have

QueryDist(ℓ) =

{(
π(ℓ)s ·Hm,s

)−1
if ℓ ∈ sketch

0 otherwise.

Note that the total size of the sketch is O(κ).

Counter functions. We instantiate κ+1 counter functions CF1, . . . ,CFκ+1. Each
counter function CFi has a replication factor ρi, chosen as a function of the
Zipf distribution. More formally, for all n ∈ N≥1, κ ∈ N≥1, ρ ∈ [n], we define
CFi : [n]→ [ρi] such that

CFi(x) =

⌈
x ·
⌈
n

ρi

⌉−1⌉

25

where the replication factor ρi of the ith counter function for i ∈ [κ] is

ρi :=

⌈
ρ · i−s

Hm,s

⌉
,

and for i = κ+ 1, ρκ+1 = 1. We also set the parameter

ρ = m ·Hm,s.

As a result, CF1 has the highest replication factor while CFκ+1 has the lowest.

Choice function. For our choice function, we want to map labels with high prob-
ability to counter functions with high replication factors. Our choice function
maps the top-κ labels to the largest κ replication factors, and all other labels to
a replication factor of 1. More formally, the choice function chooseCF : [0, 1] →
[κ+ 1] is defined as

chooseCF(p) =


⌈
exp

(
s−1 · log

(
(p ·Hm,s)

−1
))⌉

if p ≥
(
κs ·Hm,s

)−1

κ+ 1 otherwise.

Epoch length. Finally, we set our epoch length n = m, where m = #DX.

7.1 Efficiency

Concretely, we instantiate ΩDX for Zipf distributions as follows:

– We start with the semi-dynamic Π+
bas construction of Cash, Jaeger, Jarecki,

Jutla, Krawczyk, Rosu and Steiner [17] with leakage profile Lbas = (dsize, oeq).
– We then use our shuffle-based compiler SRC using CacheShuffle to compile

Π+
bas to a static rebuildable scheme ωbas. From Theorem 1, ωbas has leakage

profile Lω = (LS,LQ,LR) = (dsize, qeq,⊥).
– Finally, we suppress the query equality leakage of ωbas using ERS and our

instantiations for the Zipf distribution to generate the static rebuildable
dictionary encryption scheme Ωbas with leakage profile Lω = (dsize,⊥,⊥).

Efficiency of Π+
bas. When used as an encrypted dictionary, Π+

bas has O(1) com-
munication and round complexity and O(#DX) server-side storage. Π+

bas is non-
interactive and has a constant client state. We refer to the rebuildable scheme
output by SRC on input Π+

bas as ωbas.

Efficiency of ωbas. After compilation, the online communication complexity and
client state of ωbas is O(1). The online round complexity of ωbas is also O(1),
without accounting for the round complexity introduced by the rebuild.

26

Rebuilding ωbas. From Section 4.3 we know that SRC based on CacheShuffle
has communication complexity O(#DS · logstate #DS) with client state O(state)
when state = o(log#DS). The total round complexity of the shuffle is also
O(#DS logstate #DS).

Server storage. From Equation 1, substituting for ρi and n, we have:

storageΩ(DX) = O
(κ∑

i=1

⌈
ρ · i−s

Hm,s

⌉
+

m∑
κ+1

1 +m
)
= O(ρ+m).

Client state. From Equation 2, knowing that client state for ωbas is O(1) and
using a top-κ sketch, we have:

stateΩ(DX) =
(
O(κ) + statecache(Q) + stateShuffle(DX)

)
.

Then our total client state depends on the size of the replica cache and on the
state used by CacheShuffle for DX.

Online communication complexity. From Equation 3, knowing that online com-
munication complexity for ωbas is O(1), we have:

ocommΩ(q) = O(1).

The total client state available impacts the amortized communication and
round complexity of Ωbas due to the client state used by CacheShuffle. It also
restricts the size of the sketch κ and the size of the replica cache, which affects
the correctness of Ωbas.

We can instantiate ERS in two modes, depending on the availability of client
state. For each mode, we fix a sketch size and demonstrate that the size of the
replica cache (and therefore the total client state) does not exceed this sketch
size asymptotically. We also show that while Ωbas has the same server storage
and online communication complexity in both modes, each mode leads to dif-
ferent trade-offs in amortized communication complexity, round complexity, and
correctness.

7.2 Mode 1: Client state grows as m
1

s−1

In this mode, we set:

sketch size κ = m
1

s−1 , with s > 2

we also know #DX = O(ρ+m),

ρ = m ·Hm,s, and

n = θ(m).

27

Since m
1

s−1 is ω(log(ρ + m)) for s > 2, we can compute the communication
complexity of CacheShuffle as:

commCacheShuffle(DX) = O

(
(ρ+m) · log(ρ+m)

logm
1

s−1

)

= O

(
(m ·Hm,s +m) · log(m ·Hm,s +m)

logm

)

= O

(
m ·Hm,s ·

log(m ·Hm,s)

logm

)

Since for s ≥ 1, Hm,s = O(logm), we have:

commCacheShuffle(DX) = O
(
m · (logm+ log logm)

)
= O

(
m · logm

)
.

Amortized communication complexity. From Equation 5, the amortized query
complexity of Ωbas:

commΩbas
(q) =

1

n
·

(
n∑

i=1

O(1) +O
(
m · logm

))
= O(logm), since n = O(m).

Amortized round complexity. From Equation 6, knowing that the round com-
plexity of ωbas is O(1), we have the amortized round complexity of Ωbas:

roundsΩbas
(q) =

1

n
·

(
n∑

i=1

O(1) + roundsShuffle(DX)

)
,

= O(1) +O(commΩbas
(q))

= O(logm).

Correctness. We state the following corollary of Theorem 3 to bound the cache

size of Ωbas with client state O(m
1

s−1) for s > 2, and defer the proof to the full
version of our paper.

Corollary 1. For n,m ≥ 1, let p1, p2, . . . , pm be the pmf of a Zipf distribution
Zm,s with parameter s > 2. If n = m, then for any time 1 ≤ t ≤ n, for any
δ > 0:

Pr
[
Y (t) ≥ (1 + δ) · (m

1
s−1 + logm)

]
≤ exp

(
−δ2

2 · (1 + δ)
· m

1
s−1

Hm,s

)
,

where Y (t) is a random variable representing the size of the replica cache for
Ωbas at time t.

28

7.3 Mode 2: Client state polylogarithmic in m

We can also restrict ERS when the client only has poly-logarithmic state avail-
able. In particular, we can set:

sketch size κ = log2(ρ+m)

we also know #DX = O(ρ+m),

ρ = m ·Hm,s, and

n = θ(m).

Since log2(ρ + m) is ω(log(ρ + m)), we can compute the communication com-
plexity of CacheShuffle as:

commCacheShuffle(DX) = O

(
(ρ+m) · log(ρ+m)

log(log2(ρ+m))

)

= O

(
(m ·Hm,s +m) · log(m ·Hm,s +m)

log(log2(m ·Hm,s +m))

)

= O

(
m ·Hm,s ·

log(m ·Hm,s)

log(log(m ·Hm,s))

)

since for s > 1, Hm,s = O(logm), we have:

commCacheShuffle(DX) = O

(
m · logm · logm+ log logm

log(logm+ log logm)

)

= O

(
m · log2 m
log logm

)
.

Amortized communication complexity. From Equation 5, the amortized query
complexity of Ωbas:

commΩbas
(q) =

1

n
·

(
n∑

i=1

O(1) +O

(
m · log2 m
log logm

))

= O(1) +O

(
m · log2 m

n · log(logm)

)

= O

(
log2 m

log logm

)
, since n = O(m).

29

Amortized round complexity. From Equation 6, knowing that the round com-
plexity of ωbas is O(1), we have the amortized round complexity of Ωbas:

roundsΩbas
(q) =

1

n
·

(
n∑

i=1

O(1) + roundsShuffle(DX)

)
,

= O(1) +O(commΩbas
(q))

= O

(
log2 m

log logm

)
.

Correctness. We do not have a closed-form bound on the cache size for this
mode. Instead, we use simulations to compute correctness loss during the epoch
for different values of s. Our experiments use a dictionary of size 222 with an
epoch length of 222 queries. When ERS retrieves a dummy instead of the correct
value for a queried label, we refer to it as a false positive response. In Figure 7
we show false positive rates when the replica cache size is bounded by the sketch
size κ. This shows us that correctness increases when s increases. We show
additional experimental results in the full version of our paper. Our artifact
with reproducibility instructions for the experiments can be found at https:
//anonymous.4open.science/r/qeq-suppression/.

κ = M = logm κ = M = log2 m κ = M = m
1
s κ = M = m

1
s−1

s = 1.0001 99.99 99.97 0 n/a
s = 2.0001 99.97 89.42 0 0
s = 3.0001 98.90 0 0 0
s = 4.0001 69.05 0 0 0

Fig. 7. False positive percentages for different combinations of Zipf parameter s, sketch
size κ when the maximum cache size M is set to κ. 0 indicates all correct responses.

30

https://anonymous.4open.science/r/qeq-suppression/
https://anonymous.4open.science/r/qeq-suppression/

References

1. Adkins, D., Agarwal, A., Kamara, S., Moataz, T.: Encrypted blockchain databases.
In: Proceedings of the 2nd ACMConference on Advances in Financial Technologies.
pp. 241–254 (2020)

2. Agarwal, A., Espiritu, Z.: Sequentially consistent concurrent encrypted multimaps.
In: 2025 IEEE 10th European Symposium on Security and Privacy (EuroS&P).
IEEE (2025)

3. Agarwal, A., Kamara, S., Moataz, T.: Concurrent Encrypted Multimaps. In: Ad-
vances in Cryptology – ASIACRYPT 2024: 30th International Conference on the
Theory and Application of Cryptology and Information Security, Kolkata, India,
December 9–13, 2024, Proceedings. Part IV. pp. 169–201. Springer-Verlag, Berlin,
Heidelberg (Dec 2024). https://doi.org/10.1007/978-981-96-0894-2 6, https://doi.
org/10.1007/978-981-96-0894-2 6

4. Ajtai, M., Komlós, J., Szemerédi, E.: An o(n log n) sorting network. In: ACM
Symposium on Theory of Computing (STOC ’83). pp. 1–9 (1983)

5. Amjad, G., Kamara, S., Moataz, T.: Injection-secure structured and searchable
symmetric encryption. In: Guo, J., Steinfeld, R. (eds.) Advances in Cryptology -
ASIACRYPT 2023 - 29th International Conference on the Theory and Application
of Cryptology and Information Security, Guangzhou, China, December 4-8, 2023,
Proceedings, Part VI. Lecture Notes in Computer Science, vol. 14443, pp. 232–262.
Springer (2023). https://doi.org/10.1007/978-981-99-8736-8 8, https://doi.org/10.
1007/978-981-99-8736-8 8

6. Amjad, G., Patel, S., Persiano, G., Yeo, K., Yung, M.: Dynamic Volume-Hiding En-
crypted Multi-Maps with Applications to Searchable Encryption. Proceedings on
Privacy Enhancing Technologies (2023), https://petsymposium.org/popets/2023/
popets-2023-0025.php

7. Asharov, G., Naor, M., Segev, G., Shahaf, I.: Searchable symmetric encryption:
Optimal locality in linear space via two-dimensional balanced allocations. In: ACM
Symposium on Theory of Computing (STOC ’16). pp. 1101–1114. STOC ’16, ACM,
New York, NY, USA (2016). https://doi.org/10.1145/2897518.2897562, http://doi.
acm.org/10.1145/2897518.2897562

8. Batcher, K.: Sorting networks and their applications. In: Proceedings of the Joint
Computer Conference. pp. 307–314 (1968)

9. Bienstock, A., Patel, S., Seo, J.Y., Yeo, K.: Near-optimal oblivious key-value stores
for efficient psi, psu and volume-hiding multi-maps. In: 32nd USENIX Security
Symposium (USENIX Security 23). pp. 301–318 (2023)

10. Blackstone, L., Kamara, S., Moataz, T.: Revisiting leakage abuse attacks. In: Net-
work and Distributed System Security Symposium (NDSS ’20) (2020)

11. Bossuat, A., Bost, R., Fouque, P.A., Minaud, B., Reichle, M.: Sse and ssd: page-
efficient searchable symmetric encryption. In: Advances in Cryptology–CRYPTO
2021: 41st Annual International Cryptology Conference, CRYPTO 2021, Virtual
Event, August 16–20, 2021, Proceedings, Part III 41. pp. 157–184. Springer (2021)

12. Bost, R.: Sophos - forward secure searchable encryption. In: ACM Conference on
Computer and Communications Security (CCS ’16) (20016)

13. Brézot, T., Hébant, C.: Findex: A Concurrent and Database-Independent Search-
able Encryption Scheme (2024), https://eprint.iacr.org/2024/1541, publication
info: Preprint.

14. Cash, D., Grubbs, P., Perry, J., Ristenpart, T.: Leakage-abuse attacks against
searchable encryption. In: ACM Conference on Communications and Computer
Security (CCS ’15). pp. 668–679. ACM (2015)

31

https://doi.org/10.1007/978-981-96-0894-2_6
https://doi.org/10.1007/978-981-96-0894-2_6
https://doi.org/10.1007/978-981-96-0894-2_6
https://doi.org/10.1007/978-981-96-0894-2_6
https://doi.org/10.1007/978-981-99-8736-8_8
https://doi.org/10.1007/978-981-99-8736-8_8
https://doi.org/10.1007/978-981-99-8736-8_8
https://doi.org/10.1007/978-981-99-8736-8_8
https://petsymposium.org/popets/2023/popets-2023-0025.php
https://petsymposium.org/popets/2023/popets-2023-0025.php
https://doi.org/10.1145/2897518.2897562
https://doi.org/10.1145/2897518.2897562
http://doi.acm.org/10.1145/2897518.2897562
http://doi.acm.org/10.1145/2897518.2897562
https://eprint.iacr.org/2024/1541

15. Cash, D., Jarecki, S., Jutla, C., Krawczyk, H., Rosu, M., Steiner, M.: Highly-
scalable searchable symmetric encryption with support for boolean queries. In:
Advances in Cryptology - CRYPTO ’13. Springer (2013)

16. Cash, D., Tessaro, S.: The locality of searchable symmetric encryption. In: Ad-
vances in Cryptology - EUROCRYPT 2014 (2014)

17. Cash, D., Jaeger, J., Jarecki, S., Jutla, C., Krawczyk, H., Rosu, M., Steiner, M.:
Dynamic searchable encryption in very-large databases: Data structures and im-
plementation. In: Network and Distributed System Security Symposium (NDSS
’14) (2014)

18. Cash, D., Ng, R., Rivkin, A.: Improved structured encryption for sql databases via
hybrid indexing. In: Applied Cryptography and Network Security: 19th Interna-
tional Conference, ACNS 2021, Kamakura, Japan, June 21–24, 2021, Proceedings,
Part II. pp. 480–510. Springer (2021)

19. Chase, M., Kamara, S.: Structured encryption and controlled disclosure. In: Ad-
vances in Cryptology - ASIACRYPT ’10. Lecture Notes in Computer Science,
vol. 6477, pp. 577–594. Springer (2010)

20. Cooper, B.F., Silberstein, A., Tam, E., Ramakrishnan, R., Sears, R.: Benchmarking
cloud serving systems with ycsb. In: Proceedings of the 1st ACM symposium on
Cloud computing. pp. 143–154 (2010)

21. Curtmola, R., Garay, J., Kamara, S., Ostrovsky, R.: Searchable symmetric en-
cryption: Improved definitions and efficient constructions. In: ACM Conference on
Computer and Communications Security (CCS ’06). pp. 79–88. ACM (2006)

22. Demertzis, I., Papamanthou, C.: Fast searchable encryption with tunable locality.
In: ACM International Conference on Management of Data (SIGMOD ’17). pp.
1053–1067. SIGMOD ’17, ACM, New York, NY, USA (2017). https://doi.org/10.
1145/3035918.3064057, http://doi.acm.org/10.1145/3035918.3064057

23. Espiritu, Z., George, M., Kamara, S., Qin, L.: Synq: Public Policy Analytics Over
Encrypted Data. In: 2024 IEEE Symposium on Security and Privacy (SP). pp.
146–165. IEEE, San Francisco, CA, USA (May 2024). https://doi.org/10.1109/
sp54263.2024.00085, https://ieeexplore.ieee.org/document/10646768/

24. Faber, S., Jarecki, S., Krawczyk, H., Nguyen, Q., Rosu, M., Steiner, M.: Rich
queries on encrypted data: Beyond exact matches. In: European Symposium on
Research in Computer Security (ESORICS ’15). Lecture Notes in Computer Sci-
ence. vol. 9327, pp. 123–145 (2015)

25. Falzon, F., Markatou, E.A., Espiritu, Z., Tamassia, R.: Range Search over En-
crypted Multi-Attribute Data. Proceedings of the VLDB Endowment 16(4), 587–
600 (Dec 2022). https://doi.org/10.14778/3574245.3574247, https://dl.acm.org/
doi/10.14778/3574245.3574247

26. George, M., Kamra, S., Moataz, T.: Structured encryption and dynamic leakage
suppression. In: Advances in Cryptology - EUROCRYPT 2021 (2021)

27. Goldreich, O., Ostrovsky, R.: Software protection and simulation on oblivious
RAMs. Journal of the ACM 43(3), 431–473 (1996)

28. Grubbs, P., Khandelwal, A., Lacharité, M.S., Brown, L., Li, L., Agarwal, R., Ris-
tenpart, T.: Pancake: Frequency smoothing for encrypted data stores. In: 29th
USENIX Security Symposium (USENIX Security 20). pp. 2451–2468 (2020)

29. Grubbs, P., Khandelwal, A., Lacharité, M.S., Brown, L., Li, L., Agarwal, R., Ris-
tenpart, T.: Pancake: Frequency smoothing for encrypted data stores. In: 29th
USENIX Security Symposium (USENIX Security 20). pp. 2451–2468 (2020)

30. Grubbs, P., Lacharité, M., Minaud, B., Paterson, K.G.: Pump up the volume:
Practical database reconstruction from volume leakage on range queries. In: Lie, D.,

32

https://doi.org/10.1145/3035918.3064057
https://doi.org/10.1145/3035918.3064057
https://doi.org/10.1145/3035918.3064057
https://doi.org/10.1145/3035918.3064057
http://doi.acm.org/10.1145/3035918.3064057
https://doi.org/10.1109/sp54263.2024.00085
https://doi.org/10.1109/sp54263.2024.00085
https://doi.org/10.1109/sp54263.2024.00085
https://doi.org/10.1109/sp54263.2024.00085
https://ieeexplore.ieee.org/document/10646768/
https://doi.org/10.14778/3574245.3574247
https://doi.org/10.14778/3574245.3574247
https://dl.acm.org/doi/10.14778/3574245.3574247
https://dl.acm.org/doi/10.14778/3574245.3574247

Mannan, M., Backes, M., Wang, X. (eds.) Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security, CCS 2018, Toronto, ON,
Canada, October 15-19, 2018. pp. 315–331. ACM (2018). https://doi.org/10.1145/
3243734.3243864, https://doi.org/10.1145/3243734.3243864

31. Grubbs, P., Lacharite, M.S., Minaud, B., Paterson, K.G.: Pump up the Volume:
Practical Database Reconstruction from Volume Leakage on Range Queries. In:
Proceedings of the 2018 ACM SIGSAC Conference on Computer and Commu-
nications Security. pp. 315–331. CCS ’18, Association for Computing Machin-
ery, New York, NY, USA (Oct 2018). https://doi.org/10.1145/3243734.3243864,
https://dl.acm.org/doi/10.1145/3243734.3243864

32. Grubbs, P., Lacharité, M., Minaud, B., Paterson, K.G.: Learning to reconstruct:
Statistical learning theory and encrypted database attacks. In: 2019 IEEE Sym-
posium on Security and Privacy, SP 2019, San Francisco, CA, USA, May 19-
23, 2019. pp. 1067–1083. IEEE (2019). https://doi.org/10.1109/SP.2019.00030,
https://doi.org/10.1109/SP.2019.00030

33. Gui, Z., Johnson, O., Warinschi, B.: Encrypted Databases: New Volume Attacks
against Range Queries. In: Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security. pp. 361–378. CCS ’19, Association for
Computing Machinery, New York, NY, USA (Nov 2019). https://doi.org/10.1145/
3319535.3363210, https://dl.acm.org/doi/10.1145/3319535.3363210

34. Gui, Z., Paterson, K.G., Patranabis, S., Warinschi, B.: Swissse: System-wide se-
curity for searchable symmetric encryption. Proceedings on Privacy Enhancing
Technologies (2024)

35. Islam, M.S., Kuzu, M., Kantarcioglu, M.: Access pattern disclosure on searchable
encryption: Ramification, attack and mitigation. In: Network and Distributed Sys-
tem Security Symposium (NDSS ’12) (2012)

36. Jutla, C., Patranabis, S.: Efficient searchable symmetric encryption for join queries.
In: Advances in Cryptology–ASIACRYPT 2022: 28th International Conference on
the Theory and Application of Cryptology and Information Security, Taipei, Tai-
wan, December 5–9, 2022, Proceedings, Part III. pp. 304–333. Springer (2023)

37. Kamara, S., Moataz, T.: Boolean searchable symmetric encryption with worst-case
sub-linear complexity. In: Advances in Cryptology - EUROCRYPT ’17 (2017)

38. Kamara, S., Moataz, T.: Computationally volume-hiding structured encryption.
In: Advances in Cryptology - Eurocrypt’ 19 (2019)

39. Kamara, S., Papamanthou, C.: Parallel and dynamic searchable symmetric encryp-
tion. In: Financial Cryptography and Data Security (FC ’13) (2013)

40. Kamara, S., Papamanthou, C., Roeder, T.: Dynamic searchable symmetric encryp-
tion. In: ACM Conference on Computer and Communications Security (CCS ’12).
ACM Press (2012)

41. Kamara, S., Kati, A., Moataz, T., DeMaria, J., Park, A., Treiber, A.: MAPLE:
MArkov Process Leakage attacks on Encrypted Search. Proceedings of Pri-
vacy Enhancing Technologies 2024(1), 430–446 (2024). https://doi.org/10.56553/
popets-2024-0025

42. Kamara, S., Kati, A., Moataz, T., Schneider, T., Treiber, A., Yonli, M.: SoK:
Cryptanalysis of Encrypted Search with LEAKER - A framework for LEakage
AttacK Evaluation on Real-world data (2021), https://eprint.iacr.org/2021/1035,
publication info: Published elsewhere. Minor revision. EuroS&P 2022

43. Kamara, S., Kati, A., Moataz, T., Schneider, T., Treiber, A., Yonli, M.: Sok: Crypt-
analysis of encrypted search with leaker – a framework for leakage attack evaluation

33

https://doi.org/10.1145/3243734.3243864
https://doi.org/10.1145/3243734.3243864
https://doi.org/10.1145/3243734.3243864
https://doi.org/10.1145/3243734.3243864
https://doi.org/10.1145/3243734.3243864
https://doi.org/10.1145/3243734.3243864
https://doi.org/10.1145/3243734.3243864
https://dl.acm.org/doi/10.1145/3243734.3243864
https://doi.org/10.1109/SP.2019.00030
https://doi.org/10.1109/SP.2019.00030
https://doi.org/10.1109/SP.2019.00030
https://doi.org/10.1145/3319535.3363210
https://doi.org/10.1145/3319535.3363210
https://doi.org/10.1145/3319535.3363210
https://doi.org/10.1145/3319535.3363210
https://dl.acm.org/doi/10.1145/3319535.3363210
https://doi.org/10.56553/popets-2024-0025
https://doi.org/10.56553/popets-2024-0025
https://doi.org/10.56553/popets-2024-0025
https://doi.org/10.56553/popets-2024-0025
https://eprint.iacr.org/2021/1035

on real-world data. In: 2022 IEEE 7th European Symposium on Security and Pri-
vacy (EuroS&P). pp. 90–108 (2022). https://doi.org/10.1109/EuroSP53844.2022.
00014

44. Kamara, S., Moataz, T.: SQL on structurally-encrypted databases. In: Advances in
Cryptology–ASIACRYPT 2018: 24th International Conference on the Theory and
Application of Cryptology and Information Security, Brisbane, QLD, Australia,
December 2–6, 2018, Proceedings, Part I 24. pp. 149–180. Springer (2018)

45. Kamara, S., Moataz, T.: Design and analysis of a stateless en-
crypted document database (2023), https://www.mongodb.com/collateral/
stateless-document-database-encryption-scheme

46. Kamara, S., Moataz, T., Ohrimenko, O.: Structured encryption and leakage sup-
pression. In: Advances in Cryptology - CRYPTO ’18 (2018)

47. Kamara, S., Moataz, T., Park, A., Qin, L.: A Decentralized and Encrypted Na-
tional Gun Registry. In: 2021 IEEE Symposium on Security and Privacy (SP).
pp. 1520–1537 (May 2021). https://doi.org/10.1109/SP40001.2021.00072, https:
//ieeexplore.ieee.org/document/9519474, iSSN: 2375-1207

48. Kornaropoulos, E.M., Papamanthou, C., Tamassia, R.: The state of the uniform:
Attacks on encrypted databases beyond the uniform query distribution. In: 2020
IEEE Symposium on Security and Privacy (SP). pp. 1223–1240. IEEE (2020)

49. Kornaropoulos, E.M., Papamanthou, C., Tamassia, R.: Response-Hiding En-
crypted Ranges: Revisiting Security via Parametrized Leakage-Abuse Attacks. In:
IEEE Symp. on Security and Privacy. S&P (2021)

50. Lacharité, M., Minaud, B., Paterson, K.G.: Improved reconstruction attacks on
encrypted data using range query leakage. IACR Cryptology ePrint Archive 2017,
701 (2017), http://eprint.iacr.org/2017/701

51. Larsen, K.G., Nielsen, J.B.: Yes, there is an oblivious ram lower bound! In: Annual
International Cryptology Conference. pp. 523–542. Springer (2018)

52. Lehmkuhl, R., Henzinger, A., Corrigan-Gibbs, H.: Distributional private informa-
tion retrieval. In: 34th USENIX Security Symposium (USENIX Security 25). pp.
3377–3393. USENIX Association, Seattle, WA (Aug 2025), https://www.usenix.
org/conference/usenixsecurity25/presentation/lehmkuhl

53. Liu, C., Zhu, L., Wang, M., Tan, Y.A.: Search pattern leakage in searchable en-
cryption: Attacks and new construction. Inf. Sci. 265, 176–188 (May 2014). https:
//doi.org/10.1016/j.ins.2013.11.021, http://dx.doi.org/10.1016/j.ins.2013.11.021

54. Maiyya, S., Vemula, S.C., Agrawal, D., El Abbadi, A., Kerschbaum, F.: Waffle: An
online oblivious datastore for protecting data access patterns. Proceedings of the
ACM on Management of Data 1(4), 1–25 (2023)

55. Markatou, E.A., Falzon, F., Espiritu, Z., Tamassia, R.: Attacks on En-
crypted Response-Hiding Range Search Schemes in Multiple Dimensions.
Proceedings on Privacy Enhancing Technologies 2023(4), 204–223 (Oct
2023). https://doi.org/10.56553/popets-2023-0106, https://petsymposium.org/
popets/2023/popets-2023-0106.php

56. Ohrimenko, O., Goodrich, M.T., Tamassia, R., Upfal, E.: The melbourne shuffle:
Improving oblivious storage in the cloud. In: Automata, Languages, and Program-
ming: 41st International Colloquium, ICALP 2014, Copenhagen, Denmark, July
8-11, 2014, Proceedings, Part II 41. pp. 556–567. Springer (2014)

57. Oya, S., Kerschbaum, F.: {IHOP}: Improved statistical query recovery against
searchable symmetric encryption through quadratic optimization. In: 31st USENIX
Security Symposium (USENIX Security 22). pp. 2407–2424 (2022)

34

https://doi.org/10.1109/EuroSP53844.2022.00014
https://doi.org/10.1109/EuroSP53844.2022.00014
https://doi.org/10.1109/EuroSP53844.2022.00014
https://doi.org/10.1109/EuroSP53844.2022.00014
https://www.mongodb.com/collateral/stateless-document-database-encryption-scheme
https://www.mongodb.com/collateral/stateless-document-database-encryption-scheme
https://doi.org/10.1109/SP40001.2021.00072
https://doi.org/10.1109/SP40001.2021.00072
https://ieeexplore.ieee.org/document/9519474
https://ieeexplore.ieee.org/document/9519474
http://eprint.iacr.org/2017/701
https://www.usenix.org/conference/usenixsecurity25/presentation/lehmkuhl
https://www.usenix.org/conference/usenixsecurity25/presentation/lehmkuhl
https://doi.org/10.1016/j.ins.2013.11.021
https://doi.org/10.1016/j.ins.2013.11.021
https://doi.org/10.1016/j.ins.2013.11.021
https://doi.org/10.1016/j.ins.2013.11.021
http://dx.doi.org/10.1016/j.ins.2013.11.021
https://doi.org/10.56553/popets-2023-0106
https://doi.org/10.56553/popets-2023-0106
https://petsymposium.org/popets/2023/popets-2023-0106.php
https://petsymposium.org/popets/2023/popets-2023-0106.php

58. Pappas, V., Krell, F., Vo, B., Kolesnikov, V., Malkin, T., Choi, S.G., George, W.,
Keromytis, A., Bellovin, S.: Blind seer: A scalable private dbms. In: Security and
Privacy (SP), 2014 IEEE Symposium on. pp. 359–374. IEEE (2014)

59. Patel, S., Persiano, G., Yeo, K.: CacheShuffle: A Family of Oblivious Shuffles. In:
Chatzigiannakis, I., Kaklamanis, C., Marx, D., Sannella, D. (eds.) 45th Interna-
tional Colloquium on Automata, Languages, and Programming (ICALP 2018).
Leibniz International Proceedings in Informatics (LIPIcs), vol. 107, pp. 161:1–
161:13. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany
(2018). https://doi.org/10.4230/LIPIcs.ICALP.2018.161, https://drops.dagstuhl.
de/entities/document/10.4230/LIPIcs.ICALP.2018.161

60. Patel, S., Persiano, G., Yeo, K.: Lower bounds for encrypted multi-maps and
searchable encryption in the leakage cell probe model. In: Annual International
Cryptology Conference. pp. 433–463. Springer (2020)

61. Patel, S., Persiano, G., Yeo, K., Yung, M.: Mitigating leakage in secure cloud-
hosted data structures: Volume-hiding for multi-maps via hashing. In: Cavallaro,
L., Kinder, J., Wang, X., Katz, J. (eds.) Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security, CCS 2019, London, UK,
November 11-15, 2019. pp. 79–93. ACM (2019). https://doi.org/10.1145/3319535.
3354213, https://doi.org/10.1145/3319535.3354213

62. Persiano, G., Yeo, K.: Limits of breach-resistant and snapshot-oblivious rams.
Cryptology ePrint Archive (2023)

63. Song, D., Wagner, D., Perrig, A.: Practical techniques for searching on encrypted
data. In: IEEE Symposium on Research in Security and Privacy. pp. 44–55. IEEE
Computer Society (2000)

64. Stefanov, E., van Dijk, M., Shi, E., Fletcher, C., Ren, L., Yu, X., Devadas, S.:
Path oram: An extremely simple oblivious ram protocol. In: ACM Conference on
Computer and Communications Security (CCS ’13) (2013)

65. Stefanov, E., Papamanthou, C., Shi, E.: Practical dynamic searchable encryp-
tion with small leakage. In: Network and Distributed System Security Symposium
(NDSS ’14) (2014)

66. Wang, J., Chow, S.S.: Simple storage-saving structure for volume-hiding encrypted
multi-maps: (a slot in need is a slot indeed). In: IFIP Annual Conference on Data
and Applications Security and Privacy. pp. 63–83. Springer (2021)

67. Wang, J., Sun, S.F., Li, T., Qi, S., Chen, X.: Practical volume-hiding encrypted
multi-maps with optimal overhead and beyond. In: Proceedings of the 2022 ACM
SIGSAC Conference on Computer and Communications Security. pp. 2825–2839
(2022)

68. Wang, J., Sun, S.F., Li, T., Qi, S., Chen, X.: Practical Volume-Hiding En-
crypted Multi-Maps with Optimal Overhead and Beyond. In: Proceedings of the
2022 ACM SIGSAC Conference on Computer and Communications Security. pp.
2825–2839. CCS ’22, Association for Computing Machinery, New York, NY, USA
(Nov 2022). https://doi.org/10.1145/3548606.3559345, https://doi.org/10.1145/
3548606.3559345

69. Wang, X.S., Nayak, K., Liu, C., Chan, T.H.H., Shi, E., Stefanov, E., Huang, Y.:
Oblivious Data Structures. In: Proceedings of the 2014 ACM SIGSAC Conference
on Computer and Communications Security. pp. 215–226. CCS ’14, Association
for Computing Machinery, New York, NY, USA (Nov 2014). https://doi.org/10.
1145/2660267.2660314, https://doi.org/10.1145/2660267.2660314

70. Zhang, Y., Katz, J., Papamanthou, C.: All your queries are belong to us: The power
of file-injection attacks on searchable encryption. In: USENIX Security Symposium
(2016)

35

https://doi.org/10.4230/LIPIcs.ICALP.2018.161
https://doi.org/10.4230/LIPIcs.ICALP.2018.161
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2018.161
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2018.161
https://doi.org/10.1145/3319535.3354213
https://doi.org/10.1145/3319535.3354213
https://doi.org/10.1145/3319535.3354213
https://doi.org/10.1145/3319535.3354213
https://doi.org/10.1145/3319535.3354213
https://doi.org/10.1145/3548606.3559345
https://doi.org/10.1145/3548606.3559345
https://doi.org/10.1145/3548606.3559345
https://doi.org/10.1145/3548606.3559345
https://doi.org/10.1145/2660267.2660314
https://doi.org/10.1145/2660267.2660314
https://doi.org/10.1145/2660267.2660314
https://doi.org/10.1145/2660267.2660314
https://doi.org/10.1145/2660267.2660314

