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Abstract—Data analytics is a core part of modern decision mak-
ing, especially in public policy. However, there exists a tension
between data privacy and otherwise socially beneficial analytics
when data sources contain personal information. We design
Synq, a system that supports analytics over encrypted data
while accounting for the usability considerations institutions
may have when conducting studies that affect public policy.
We specifically use an application-centric approach and model
Synq’s design requirements from a large-scale series of studies
conducted on the opioid epidemic in Massachusetts. We sys-
tematize the design considerations of the public policy context
and demonstrate how the combination of design considerations
that Synq addresses is novel through a survey of the literature.
We then present our protocol which combines structured
encryption, somewhat homomorphic encryption, and oblivious
pseudorandom functions to support a complex query language
that includes filtering (retrieving rows by attribute/value pairs),
linking (merging rows from different tables that represent
the same individual) and aggregate functions (sum, count,
average, variance, regression). We formally express the security
of our protocol and show that Synq is efficient in practice
while satisfying usability considerations that are critical to
deployment in the setting of public policy studies.

1. Introduction

Data analysis is a core part of decision making in almost
every facet of society. It is well understood that more
data—specifically, relevant data from different sources—
leads to more robust and beneficial insights [39], [41], [84].
This understanding explains the prevalence of collaborative,
public policy studies where an analyst aggregates data from
multiple data owners (e.g., non-profits and government or-
ganizations) in a larger dataset to enable more powerful anal-
yses [7]. Some studies go further by linking data about the
same person from different datasets by matching personal
identifiable information (PII) for even more comprehensive
analysis. This is commonly implemented via a central-
ized, trusted server that aggregates datasets and makes them
available to analysts (e.g., [72]). However, PII and other
sensitive information (e.g., healthcare diagnoses or visits)
are subject to legal safeguards (e.g., HIPAA). Data owners
must navigate institutional processes and legal approvals to
make such analyses tenable, and these challenges only grow
with the number of involved parties [85], [89].

§. Work conducted in part at Brown University.

One way to make these studies possible is to design sys-
tems that support analytics over encrypted datasets. Several
existing systems towards this goal are designed as general-
purpose systems (e.g., [12], [77], [87]). Other systems (e.g.,
[27], [83]) prioritize application-centric design, where a
system is designed for the needs and challenges of a specific
application setting. In this work, we take an application-
centric approach to our system design. Our work was initi-
ated by discussions with the Policy Lab at Brown University
about balancing privacy concerns with the need for data-
driven insights in policymaking [3]. They highlighted a
specific public health initiative as a model of the constraints
and functionalities to support when designing a system for
privacy-preserving analytics used by public institutions.

The MA DPH initiative. Our work focuses on the
Chapter 55 initiative conducted by the Massachusetts De-
partment of Public Health (MA DPH), which produced 23
studies using data from multiple government agencies and
public health institutions to better understand the scale of the
opioid epidemic in Massachusetts, its underlying causes, and
successful interventions for addressing it [72]. Throughout
the paper, we provide a running example of how the MA
DPH initiative informed our research and how our system
can implement the multiple studies involved.

Deployment topology. As part of our application-centric
approach, we first identified a set of design requirements.
In doing so, we discovered a gap in the literature—namely,
that the deployment topology and the design considerations
required by our specific context had not been identified and
appropiately addressed by existing systems. A deployment
topology is a configuration of participating parties and the
data flow between them. Figure 1 presents a taxonomy
of commonly used deployment topologies. For example,
(T0) is a simple topology where a data owner uploads
data to a server and an analyst later queries the server.
Many prior encrypted database systems (e.g., [10], [56],
[59], [78]) follow this topology. At the other extreme, the
synchronous compute topology (T5) requires all parties to
synchronously interact throughout query execution. Other
topologies found in prior work include: the analyst com-
municates synchronously with a group of servers that hold
(outsourced) datasets previously uploaded by data owners
(T2); the analyst communicates synchronously with one
selected data owner (T3); and the analyst communicates
synchronously with all the data owners (T4). With the
exception of (T1) and (T2), all the multi-owner topologies
require that data owners be online during query computation.
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Figure 1. A taxonomy of deployment topologies. P nodes represent data owners who contribute data. S represent compute servers. Q represents an
analyst. Highlighted areas and solid edges denote parts of the topology involved in synchronous computation with Q for queries. Increasing topology
numbers roughly correspond to increasing synchronization requirements between the parties (e.g., (T1) has the least synchronization; (T5) has the most).

Topology of MA DPH. For the MA DPH initiative, par-
ticipating data owners contributed 22 datasets with a diverse
set of attributes about individuals in Massachusetts. Datasets
were hand-delivered to the DPH on encrypted hard drives
which were then semi-manually linked together in plaintext.
Finally, records were de-identified and made available to
approved analysts. This centralized compute topology (T1)
is particularly important in the public policy context, due to
a wide variety of reasons that we will examine in Section 2.

1.1. Our Contributions

We present Synq, a system which enables complex
multi-dataset analyses over encrypted data, accounts for
real-world constraints faced by public policy organizations,
and guarantees data privacy even when all-but-one of the
data owners collude with the server. While Synq was de-
signed around the MA DPH context, we demonstrate the
potential broader impact of our design by showing how Synq
can also enable a privacy-preserving wage equity study [69]
outside of the MA DPH initiative in Appendix C.

Design considerations. We use application-centric de-
sign to understand the usability and expressivity needs of
multi-dataset analytics that Synq must satisfy. While we use
the MA DPH setting as our primary example, we show that
the application-centric approach surfaces concerns relevant
for public policy studies at large that are not fully addressed
by prior work. We define our design considerations and how
they relate to prior work in Sections 2 and 3.

Query language. A significant challenge in designing
a system for encrypted analytics is determining the appro-
priate level of query expressivity. In Section 5, we propose
Synq-QL which supports common operations required by
public policy studies. Synq-QL is based on a survey of the
queries performed in the MA DPH initiative and supports
filters, linking records across owners, and aggregations.

Protocol design. We propose a new protocol based
on structured encryption (STE), somewhat homomorphic
encryption (SHE), and oblivious pseudorandom functions
(OPRFs). We provide a formal leakage analysis, and prove
that our protocol reveals at most this leakage when the server
and all-but-one of the data owners are corrupted by a semi-
honest adversary. Any adversary who gains access to a copy
of the encrypted data structures will only learn cumulative

statistics (e.g. the total number of records in each dataset).
Therefore, Synq provides better protection against external
breaches compared to both plaintext systems and systems
based on property-preserving encryption (PPE). Further,
since Synq makes black-box use of STE schemes, we can
leverage future advances (such as leakage suppression [47],
[57]) to improve its security and efficiency.

Improved linking. Most prior work that supports record
linking uses either a plaintext linking phase, a trusted third
party (TTP), or deterministic encryption (DTE). Plaintext
linking or the use of a TTP (such as in the MA DPH
initiative) requires a significant trust assumption, and DTE
reveals all the links in the data to the server at setup time.
Synq uses a linking protocol that only reveals a subset of the
links to the server at query time. We express this leakage
precisely and show that it remains unchanged even when
all-but-one of the data owners collude with the server.

Evaluation. We implement Synq and perform an empir-
ical evaluation that shows its real-world feasibility.

2. Design Considerations

Inspired by discussions with the Policy Lab at Brown
University and the emerging literature on secure multiparty
computation usability (e.g., [66], [67], [69], [90]), we de-
veloped design requirements for Synq aimed at supporting
the technical and usability needs demonstrated by previous
real-world public policy studies—in particular, the MA DPH
initiative and a public policy study about wage equity in
Boston [69]. In both studies, analysts were able to obtain
insight on public policy questions using data from a wide
array of institutions (i.e. government, industry, academia,
nonprofits, hospitals) while preserving the privacy of the
original datasets. We analyzed the documented requirements
of these studies, their priorities, and their challenges to come
up with the design considerations for Synq in Table 1.

Usability. The usability of a technical system is cru-
cial to its real-world applicability. Data owners may have
non-technical backgrounds [11], may make mistakes dur-
ing computation [69], and, most critically from a protocol
perspective, may not be able to participate in synchronous
computation [51], [85]. For this reason, we identify several
considerations which focus on enabling asynchronous par-
ticipation by the data owners. We acknowledge that these



TABLE 1. Synq’s design considerations, grouped by their focus on usability or expressivity, and the specific public policy concerns that motivate them.

Requirement Description Rationale
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[D1] Ephemeral
Keys

Data owners should not have to
share a symmetric key, or maintain
a public-private keypair in order to
participate.

• Practical logistics: The Boston study notes that coordinating a time when all (or
even a subset) of the owners are available simultaneously is infeasible [67], [69].

• Key maintenance: Owners do not have capability to maintain state (e.g., a long-
lived key) before or after setup (also relevant to general multi-writer DBs [90]).

[D2] Async
Setup

Data owners should be able to
upload their data without syn-
chronous setup with other owners.

• Practical logistics: See above.
• Resource constraints: Impossible for owners to remain online throughout the

execution of the entire analysis process [67], [69]; involving any subset of owners
as part of query computation requires unreasonable overhead [51], [69], [85].

[D3] Retry
Setup

Data owners should be able to retry
setup easily and without synchro-
nizing with the other data owners.

• Correcting mistakes: Asynchronous retries were necessary in the Boston study to
correct mistakes; without this feature, every mistake would lead to a restart of the
computation and erode trust in the system [67], [69].

[D4] Offline at
Query

Data owners should be able to go
offline after setup and not be online
during analyst queries.

• Practical logistics: See above.
• Resource constraints: See above.
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[D5] Multiple
Schemas

Synq should support multiple
schemas for input datasets.

• Diverse data sources: Participating MA DPH initiative data owners have their own
schema (see Appendix A of [72]); not easily unified due to different contexts.

[D6] Multi-Col
Linking

Synq should have support for link-
ing records across datasets using
the values of multiple columns.

• Linking individuals: MA DPH initiative emphasizes importance of linking records
across datasets based on PII with ways to adjust the linking granularity as a crucial
mechanism for analyzing the activity of an individual across datasets [72].

[D7] Aggregate
Functions

Synq should support counts, sums,
averages, and regressions.

• Public policy studies: All analyses in MA DPH initiative required an aggregate
operation to be supported over the underlying datasets [72].

requirements are not traditionally considered “usability”
concerns. However, prior work demonstrates that adherence
to these requirements significantly impacts whether or not
owners can feasibly participate in a policy study implemen-
tation [69], [85] and so we identify them as such.

Expressivity. Policy studies conducted over plaintext
datasets can include very expressive queries. As part of our
design process, we determined the appropriate expressivity
for Synq by using the MA DPH report [72] to (1) construct
an approximate representation of the schema used by each
of the participating data owners; (2) list all the analysis
questions mentioned in the report; and (3) identify the
required operations that we would have to support to enable
the study over encrypted datasets. Due to space restrictions,
we defer this query survey to the full version of our paper.

Computational resources. We expect Synq’s users to
have varying resources and technical expertise. The MA
DPH initiative included a diverse set of public agencies and
the Boston study included 100+ institutions with disparities
in technical support. Since institutions have varied resources,
we ensure that no specialized hardware is required and that
owners and analysts can participate asynchronously using
consumer-level desktop computers or laptops.

3. Prior Work

We now examine prior work in multi-owner analytics
over encrypted data with respect to our design consider-
ations from Section 2. To our knowledge, no prior work
in the literature addresses the combination of concerns in
Table 1. However, some of these systems were designed for
specific applications while others were designed as general-
purpose solutions. Naturally, those that were designed to be

application-centric, may have a more narrow (or different)
set of design criteria to meet the needs of their specific use
cases. Additionally, Table 2 demonstrates that many prior
works address different topologies than ours. While they
may use similar cryptographic primitives or have similar
goals, they were designed for a different setting.

We emphasize that many of the works we include in
Table 2 serve as important precedent for convincing various
governmental entities (e.g., [39], [41], [85]) of the real-world
feasibility of using cryptographic approaches for studies that
affect public policy. Synq therefore synthesizes and builds
upon lessons learned from prior work to create a system that
addresses usability considerations important to deploying
privacy-preserving analytics in this setting. Therefore, we
highlight these prior works to demonstrate the gap that Synq
fills rather than as criticism of prior work.

Table 2 demonstrates several trends in prior work:
• Expressivity vs. usability. Almost all prior work offers

some degree of expressivity, but only Web-MPC [69] and
H-SE [90] explicitly address usability concerns.

• Usability and deployment topologies. Our topology tax-
onomy reveals usability trends in prior work. As the
topology number increases, the required synchronization
also increases. Table 1 demonstrates how this leads to
decreased usability based on our design considerations.

• Lack of linking support. Some prior work supports
linking, and those that do use multi-party computation
(MPC), shared PRF keys, or property-preserving encryp-
tion (PPE). However, as described below, these techniques
incur usability or security downsides in our setting.

The only prior work that explicitly emphasizes usability
in the policy setting is the Boston study [69]. Since this
work motivates many of our usability considerations, it



TABLE 2. Survey of prior systems for multi-owner analytics over encrypted data with respect to Synq’s design requirements, grouped by whether the
system design was presented as application-centric (ACD) or not (NACD). Topologies are indicated using the taxonomy from Figure 1 with deviations
indicated by ∗. For the Design Considerations from Table 1,  indicates support, G# indicates partial support, and # indicates no or inconclusive support.
We roughly group the works by technique and, within groups, order each work by increasing topology number.
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ACD [D1] [D2] [D3] [D4] [D5] [D6] [D7]

STE Synq 2023 Our system designed around the MA DPH initiative [72]. (T1)        

Gun Reg
[58]

2021 Querier locates a single database managed by a county and generates
STE tokens with the owner via MPC to retrieve records from it.

(T3) #   G#  # #

Secret
Sharing

Boston
Web-MPC
[67], [69]

2018 Server aggregates data masked with 1-time-use additive secret
shares (or Shamir secret shares) encrypted with analyst public key.
Analyst retrieves & unmasks to sum data.

(T1)     # # G#

CARRIER
[35]

2020 Estimating coronary artery disease in Netherlands with additive-SS-
based dot product from [86]. Supports sums and 1-column links.

(T5)  # # # # G# G#

HE PDCi2b2
[80]

2018 Owners upload AHE data to server. Server key-switches server-
public-key data to analyst-public-key data to respond to queries.
Only sums; filters are in plaintext; uses standardized schema.

(T1)   #  # # G#

MedCo
[81]

2019 Owners send data to subset of owners & non-owner compute nodes
(∗) who answer sum queries. Uses key-switching from [80], SKE-
to-DTE switching protocol; uses standardized schema.

(T2)
∗

G#  # G# # # G#

Kaptchuk
et al. [60]

2017 Owners globally publish FHE-encrypted data; analysts download 1
dataset, compute locally, and send result to owner to decrypt.

(T3) #  G# # # #  

FAMHE
[45]

2021 Biomedical analyst sends query to owners, who iteratively perform
local computation and exchange HE ciphertexts to compute.

(T4) #  # # # #  

Circuit
MPC

VaultDB
[83]

2022 Owners send secret shares to subset of owners who answer MPC
queries (∗); linking via shared PRF key & heuristic anonymization
from [33]. Only counts; owners manually standardize schema.

(T2)
∗

G# # # G# G#  G#

Estonia Tax
Study [18]

2016 Links education/tax data with garbled circuits & additive SS from
[17]. Uses plaintext process to standardize schema.

(T2)  # # # G#   

Enclave Princess
[27]

2017 Intel-SGX-based aggregations of genome data under a standardized
format. SGX server acts as analyst (∗); all parties learn output.

(T4)
∗

 # # # # #  

Private
Set

Intersect

NPSAS
Pilot [11]

2021 Protocol for linking education records over known student IDs using
garbled circuits, programmable PRFs, and cuckoo hashing. Supports
averages and 1-col links.

(T5)  # # #  G# G#

PSI-HU /
PSI-CI [34]

2021 Analytics (supports two specialized metrics) and linking via cuckoo
hashing with a shared PRF key. Assumes existence of PKI.

(T5) # # # # #  G#

PI-Sum
[52]

2020 Uses OPRF-based oblivious transfer, Bloom filters, and AHE to
compute aggregate sums for ad conversions. Supports 1-col links.

(T5)  # # # # # G#

NACD

PKSE H-SE [90] 2022 General multi-writer system based on public-key searchable-
encryption (PKSE) & identity-based encryption.

(T1) #  #  # # #

HE UnLynx
[44]

2017 Uses HE, zero-knowledge-proofs, and verifiable shuffles to enforce
confidentiality / unlinkability between providers and data for sums.
Owners must respond at query time; no setup phase.

(T4) # # # # # # G#

Circuit
MPC

Jana [12],
[51]

2018 Uses PPE for certain queries; for others, owners upload data shares
to servers which collectively use MPC. Does not support regres-
sions. Supports joins on plaintext or DTE values.

(T2)   #    G#

Senate [77] 2021 Owners collaboratively run SQL queries using MPC query planning;
supports malicious model. No regression support.

(T5)  # # #   G#

Conclave
[87]

2019 Broker orchestrates hybrid MPC-based query plans over owner-
controlled databases; based on [17] and Obliv-C. No regressions.

(T5)  # # #   G#

SMCQL
[14]

2017 Broker orchestrates MPC-based query plans over owner-controlled
databases in semi-honest model.

(T4)  # # #    

Secret
Sharing

Logistic
regression
[6]

2022 Owners upload inputs to two non-colluding servers which use
function secret sharing to compute logistic regressions. No specific
analyst party (∗).

(T2)
∗

 # # # # # G#



(unsurprisingly) satisfies them. However, it was designed for
a particular use case which only needed one schema along
with one-time use of contributed data. We design for similar
usability considerations while expanding expressivity.

3.1. Summary of Prior Techniques

General-purpose MPC-based. The seminal Estonia tax
study [18] offers almost all the expressivity that we require
except supporting multiple schemas. However, it required
multiple restarts due to clients disconnecting during the
computation. In general, while general-purpose MPC is a
powerful tool, its synchronicity, performance, and lack of
fault tolerance (e.g., client disconnects) present usability
concerns in our setting.

MPC+PPE-based. Jana [51] is a system that supports
multi-user analytics in one of two ways depending on
the complexity of queries: by using PPE; or by using an
outsourced MPC design (T2) (topology), which allows the
data owners to remain offline during query computation.
The protocol also necessitates the use of multiple compute
servers which have to remain online during the duration of
query. Jana uses PPE to support record linking and efficient
queries (similar to MedCo [81], CryptDB [78], Seabed [8]).
However, PPE is known to leak a significant amount of
information even at setup time [73], so we avoid it in Synq.
Jana uses outsourced MPC to handle more complex queries
(similar to [77], [83], [87]). Of all the techniques used in
prior work, outsourced MPC appears to be well-suited to
our public policy setting because it addresses most of our
usability considerations. However, if more than a threshold
of the compute cluster is corrupted, the plaintext data is
revealed to the adversary. On the other hand, in Synq,
an adversary corrupting the server only learns small, well-
defined leakage about the plaintext data and queries.

MPC+STE-based. The encrypted gun registry [58] uses
both MPC and STE. Due to the use of STE, this system does
not reveal any plaintext data to the server at setup time,
and its leakage is well-defined. Similar to Synq, this system
makes black-box use of STE schemes and can therefore
leverage future advances in STE (e.g., [47], [57]). Although
it does satisfy some of our usability requirements, the reg-
istry does not support aggregates or linking of records. The
use of MPC also requires owners to be online during queries.

HE-based. Kaptchuk et. al. use fully homomorphic en-
cryption (FHE) to support analytics on encrypted medical
datasets [60]. Although their scheme supports regressions, a
linear regression on 50 encrypted rows took approximately
9.5 hours. In comparison, Synq relies on SHE and takes
less than 5 minutes to compute a linear regression on
100,000 records. Other works use additively homomorphic
encryption (AHE), such as PDCi2b2 [80] and MedCo [81].
Due to the use of AHE, these systems only support additive
aggregates, and often rely on less secure mechanisms for
filtering, such as PPE or even plaintext filtering.

Hardware-based. Princess [27] uses Intel SGX-based
enclaves. While SGX allows for arbitrary query expressivity,
the scheme does not generalize well to larger datasets due

to SGX’s memory limitations. Also, significant attacks have
been discovered against SGX (e.g., [20], [30], [42], [68]).

Omitted work. For completeness, we note that the
survey in Table 2 omits works on the following, which are
orthogonal to our setting and do not match our requirements:
• Federated machine learning [19], [54], [88], [91], where

parties collaboratively train (and potentially learn) a
model without widely sharing their own dataset.

• Private, repeated/streaming data aggregation (e.g.,
Prio+ [5], Apple and Google’s COVID-19 notification sys-
tem [9], Flag [13], TimeCrypt, [21], Zeph [22], Prio [29],
Indonesia tourism study [32], Elsa [82]), where many
clients repeatedly contribute encrypted data to an aggre-
gation server. MA DPH involves a much smaller number
of data owners (in comparison to the number of clients
usually considered in these works) who upload data once.

• Single-writer encrypted databases (e.g., Seabed [8], Ci-
pherbase [10], ESPADA [46], OPX [59], Blind Seer [76],
CryptDB [78]). Single-writer databases can technically be
proxied for multi-writer use but proxying either requires
a TTP or key sharing (which would violate [D1]). Fur-
ther, simultaneously supporting setup retries [D3], multi-
ple schemas [D5], and linking [D6] would be extremely
difficult and require additional overhead.

4. Preliminaries

Tables. A data owner Pi’s data is denoted as a table
Ti. For readability, we assume that each data owner Pi has
exactly one table Ti. Xi denotes the set of Ti’s columns. A
column can be numeric or non-numeric depending on the
values it contains. We refer to a column using a column
identifier, which may differ from the underlying column
name in the dataset. Each data record r in a table has
one value per column identifier x, denoted as r[x]. T1 ▷◁ T2

denotes a linked table, where each record r1 in T1 is
combined with a corresponding record r2 in T2 if both
records contain the same values for columns corresponding
to some link condition. X denotes the set of all columns,
XFilter to denote the columns that the analyst can perform
filters on, and XNum to denote the numeric columns.

Dictionaries and multi-maps. A dictionary DX is a data
structure that maps labels to values. Each unique label is
mapped to one value, and a query for a label returns that
corresponding value. A multi-map MM maps each label to
a tuple containing multiple values. A query for a label then
returns the label’s entire tuple in the multi-map.

Public-Key Encryption. A public-key encryption
scheme is a cryptographic primitive consisting of three
polynomial–time algorithms PKE = (Gen,Enc,Dec), which
together enable the encryption of a message m using a pub-
lic key and the decryption of the corresponding ciphertext ct
using a secret key. Gen takes a security parameter k as input
and returns a key pair (pk, sk) where pk is the public key
and sk is the secret key. Enc takes the public key pk and a
message m as inputs and returns a ciphertext ct. Dec takes
the secret key sk and a ciphertext ct as input and returns



the underlying message m. Our protocol uses a public-
key encryption scheme that is CPA-secure, which means
an adversary cannot distinguish between the encryptions of
two adversarially chosen plaintexts, even with access to the
public key, except with negligible probability [61].

Somewhat Homomorphic Encryption (SHE). A SHE
scheme SHE = (Gen,Enc,Dec,Sum,Multiply) (e.g., [28])
supports addition and at least k multiplications over en-
crypted values, where k is the maximum number of datasets
used to compute a regression. Sum is a polynomial-time
algorithm that takes two SHE ciphertexts as input and
returns a ciphertext corresponding to the sum of plaintext
underlying the input ciphertexts. Similarly, Multiply is a
polynomial-time algorithm that takes two SHE ciphertexts as
input and returns a ciphertext corresponding to the product
of the input ciphertexts. Our protocol uses a public-key SHE
scheme that is CPA-secure.

Oblivious Pseudorandom Function (OPRF). An
OPRF is a two-party protocol that involves a data owner
with some input x and a server with a key k for some
pseudorandom function F . The protocol is executed such
that the data owner learns the result of Fk(x) and the server
learns nothing [43]. We describe our protocol in the FOPRF-
hybrid world, which functions like a real-world protocol
execution except all parties have access to an ideal OPRF
functionality FOPRF—we elaborate on this in Section 6.

Structured Encryption (STE). Structured encryption
is a cryptographic primitive that allows a data owner to
encrypt a data structure for storage on an untrusted server
and later query it using a key generated at setup time. We
use STE schemes for both dictionaries and multi-maps in
our protocol. In particular, we use response-revealing STE
schemes, which reveal the query responses to the server.
The security of STE schemes is formalized in a leakage-
based model, where a leakage function is used to capture the
information leaked about the data and queries to the adver-
sary. Definitions 4.1 and 4.2 provide the syntax and security
definition for static response-revealing STE schemes.
Definition 4.1 (Structured encryption [26]). A static,

response-revealing structured encryption scheme ΣDS =
(Setup,Token,Query) for a data structure DS with query
space Q consists of three PPT algorithms:

• (K,EDS) ← Setup(1k,DS): takes as input a security
parameter 1k, and a data structure DS. It outputs a
secret key K and an encrypted structure EDS.

• tk← Token(K, q): is a possibly probabilistic algorithm
that takes as input a secret key K and a query q ∈ Q
and outputs a token tk.

• r ← Query(EDS, tk): is a possibly probabilistic algo-
rithm that takes as input an encrypted structure EDS
and a token tk and outputs a response r.

We say ΣDS = (Setup,Token,Query) is correct if, for
all k ∈ N, for all poly(k)-size structures DS with
query space Q, for all poly(k)-size sequences of queries
q1, . . . , qs where qi ∈ Q, for all K and EDS output
by Setup(1k,DS), for all tki output by Token(K, qi),
Query(EDS, tki) = DS[qi] with all but negligible prob-
ability in k.

Definition 4.2 (Λ-security of STE [26], [31]). Let STE =
(Setup,Token,Query) be a static response-revealing
structured encryption scheme. Consider the following
experiments where C is a stateful challenger, A is a
stateful adversary, S is a stateful simulator, and Λ =
(pattS, pattQ) is a leakage profile, and z ∈ {0, 1}∗:

• RealSTE,C,A(k): given z, the adversary A outputs a
structure DS and receives EDS from the challenger,
where (K,EDS) ← Setup(1k,DS). A then adap-
tively chooses a polynomial-size sequence of queries
(q1, . . . qm). For all 1 ≤ i ≤ m the adversary receives
tki where tki ← Token(K, qi). Finally, A outputs a bit
b that is output by the experiment.

• IdealSTE,A,S(k): given z, the adversary A outputs
a structure DS. Given pattS(DS), the simulator re-
turns an encrypted structure EDS to A. A then adap-
tively chooses a polynomial-size sequence of queries
(q1, . . . , qm). For each 1 ≤ i ≤ m, S is given
pattQ(DS, qi) and ri, where ri is the response of the
query qi, and it returns a token tki to A. Finally, A
outputs a bit b that is output by the experiment.

We say STE is Λ-secure if there exists a PPT sim-
ulator S such that for all PPT adversaries A, and
for all z ∈ {0, 1}∗, |Pr [RealSTE,C,A(k) = 1 ] −
Pr [ IdealSTE,A,S(k) = 1 ]| ≤ negl(k).

5. Query Language

Synq’s query language (Synq-QL) allows an analyst to
select data from any subset of the data owners, (optionally)
apply column-based filters, link datasets by pre-specified
sets of columns, and perform aggregate operations. A Synq-
QL query consists of three operations in the following order.
1) Filter. Filters are expressed as a set of per-owner, con-

junctive expressions of the form (Pi, x, value), where
Pi is the data owner the filter applies to, x is a column
identifier, and value is the value of the column.

2) Link. Synq-QL can optionally link data from mul-
tiple owners. The list of linking conditions L =
[⊥, L1, . . . , Lm] is defined prior to protocol execution,
where each Li is a set of column identifiers. Analysts
must choose a linking condition Li from this list. Then
two records are linked if they share the same values for
the columns in Li. When the linking condition is empty
(L0 = ⊥), Synq-QL does not perform any linking. To
enforce conjunctive filters, records that are not linked
with any other records are ignored.

3) Aggregate. After filtering and linking, a set of aggregate
functions are executed. Synq-QL aggregates are specified
as trees composed of base operators.
Definition 5.1 (Base Operators). The base operators are
defined as follows:
• agg ← (ColumnSum, T, x): the column sum operator

takes as input a column identifier x in table T and
outputs Σr∈T r[x].

• n ← (TableCount, T ): the table count operator out-
puts the number of entries in table T .



MA Ambulance Trip Record Information
System (MATRIS) incident records (P1)

name ssn dob diag year

AA 1111 010199 overdose 2013
BB 2222 020201 overdose 2013
CC 3333 030305 overdose 2013

...

Prescription Drug Monitoring Program
(PDMP) medication records (P2)

name ssn dob med cnt pyear

AA 1111 010199 oxycodone 14 2013
CC 3333 030305 oxycodone 30 2013
DD 4444 121287 oxycodone 28 2012

...

“What is the # of patients who had a 2013
overdose and had oxycodone prescribed?”

Synq-QL: ([(P1, diag,"overdose"),
(P1, year,2013),
(P2,med,"oxycodone"),
(P2, pyear,2013)],
1, [(TableCount, T )])

Figure 2. Running example for the relationship between opioid prescriptions and overdoses with the linking condition L1 = {name, ssn, dob}.

• y ← (JoinMultiply, T, x1, x2): the joined multiplica-
tion operator takes as input two column identifiers,
x1 and x2 in table T , and computes a new column y
where r[y] = {(r[x1] · r[x2]) : r ∈ T}.

In Appendix A, we provide concrete examples of how
to use Synq-QL’s aggregation language to express Sum,
Count, Average, Variance, linear Regression, and multiple
Regression functions as required by [D7] from Section 2.

Running example. We present a representative, simpli-
fied workload from the MA DPH report [72] which exam-
ines the relationship between opioid prescriptions and opioid
overdoses in 2013. Figure 2 provides two example datasets
used in this analysis: MATRIS (P1), which contained
records about ambulance trips, and PDMP (P2), which
had records of restricted medication prescriptions across the
state. Given the condition L1 = {name, ssn,dob} and the
schema of P1 and P2, the Synq-QL query in Figure 2
filters for all of P1’s records where diag = "overdose"
and year = 2013 and for all of P2’s records where
med = "oxycodone" and pyear = 2013, then counts
the records in the linked dataset. Since all filters are treated
as conjunctions, the resulting dataset only contains linked
records that match all 4 filters. Then, (TableCount, T ) out-
puts the number of records in the linked dataset.

6. Protocol

The Synq = (Init,Setup,Query) protocol (described in
Figures 4–5) supports the following parties:
• Server S that stores encrypted data structures and assists

in executing queries.
• Data owners P1, ...,Pn, where n = poly(k) and k is

the security parameter. Each Pi owns a table Ti and
contributes data for analysis.

• Analyst Q that executes aggregate queries over the con-
tributed data and receives the output of those queries.

Synq operates in the FOPRF-hybrid model where all parties
have access to FOPRF defined in Figure 3.

6.1. Linking

Recall Synq-QL supports linking over a chosen linking
condition Li ∈ L. Records are linked if they share the same
values for all the columns specified by Li and then are
treated as one logical record. L must be defined prior to
protocol execution to allow for application-specific linking

FOPRF = (Init,Eval) interacts with server S and party P.
• Upon receiving (Init) from S, the functionality initializes and

stores an empty dictionary DX.
• Upon receiving (Eval, x) from P, the functionality checks DX[x].

If DX[x] is empty, the functionality samples r
$←− {0, 1}k , sets

DX[x] = r, and returns r to P . Else, the functionality returns
DX[x] to P. The functionality then sends a message d to S.

Figure 3. FOPRF : The OPRF functionality.

conditions. Synq’s linking uses link tags, which are com-
puted using a pseudorandom function (PRF) applied to all
the values in the columns specified by the linking condition
Li. For example, the corresponding link tag for each record
r under the linking condition L1 from our running example
in Figure 2 would be the output of the PRF for the input
⟨r[name]||r[ssn]||r[dob]⟩. To do this, each data owner must
compute link tags using a PRF keyed on the same key.
However, requiring data owners to utilize a shared PRF key
would require either a public key infrastructure (violating
[D1]) since the owners would have to maintain a secret key)
or a synchronous key exchange (violating [D2]). We address
all these concerns by using an OPRF, which guarantees that
all data owners can generate PRF evaluations under the same
key but learn only their own outputs. Our protocol is defined
in the FOPRF-hybrid world, where every data owner has
access to an ideal OPRF functionality (Figure 3).

6.1.1. Instantiating the OPRF. Synq’s formal security
analysis assumes the FOPRF functionality is trusted. While
the use of the FOPRF-hybrid model (and, more generally,
analysis in the hybrid/ideal-world paradigm [23]) is a stan-
dard approach to modularly analyzing protocol security, the
approach results in no formal OPRF “party” within the Synq
protocol description. There are multiple ways to instantiate
this OPRF functionality, such as using an MPC protocol
between parties. We believe that the instantiation that best
fits our design considerations is a separate OPRF service,
where an additional party maintains an OPRF server that
remains online throughout Setup. Each data owner computes
linking tags on their own dataset by communicating with
the OPRF server via a single-round protocol (e.g., [65],
[79]). This specific instantiation works well with the MA
DPH initiative [72], as two semi-trusted parties with a non-
colluding assumption—the MA DPH and the Center for
Health Information and Analysis (CHIA) [1]—were already
used to heuristically secure the linking process. In the



Let P1, . . . ,Pn,Q,S be parties, ΣDX = (Setup,Token,Query)
be a response-revealing dictionary encryption scheme, let
ΣMM = (Setup,Token,Query) be a response-revealing multi-map
encryption scheme, SHE = (Gen,Enc,Dec,Add,Multiply) be
a SHE scheme, PKE = (Gen,Enc,Dec) be a PKE scheme,
and L = [⊥, L1, . . . , Lm] be a list of linking conditions.
Synq = (InitQ,S,SetupP,S,QueryQ,S) is then defined in the
FOPRF-hybrid model:

InitQ,S(1
k,⊥):

1) Q generates (pknum, sknum)← SHE.Gen(1k);
2) Q generates (pkkey, skkey)← PKE.Gen(1k);
3) S sends (Init) to the ideal functionality FOPRF;
SetupP,S(T,⊥):
1) P initializes multi-maps MMfilter, MMlink & dictionary DXdata;
2) for each r ∈ T , P

a) initializes dictionary DXr;
b) for all x ∈ XNum, sets DXr[x] := SHE.Enc(pknum, r[x]);

c) samples an identifier idr
$← {0, 1}k;

d) sets DXdata[idr] := DXr;
3) P executes (Kdata,EDXdata)← ΣDX.Setup(DX

data);
4) for each r ∈ T , P,

a) computes tkdatar ← ΣDX.Token(K
data, idr);

b) computes the linking tags for each linking condition Lj ∈ L
using the functionality FOPRF:

i) sets lid← (r[x1]|| . . . ||r[x|Lj |]) where x ∈ Lj ;
ii) sends (Eval, lid) to FOPRF and receives ltgjr;

c) for all x ∈ XFilter,

i) MMfilter[⟨x || r[x]⟩] +
:= tkdatar ;

ii) for each Lj ∈ L, MMlink[⟨x || r[x] || j⟩] +
:= ltgjr;

5) P sets up (Kfilter,EMMfilter)← ΣMM.Setup(MMfilter);
6) P sets up (K link,EMMlink)← ΣMM.Setup(MMlink);
7) P computes ctK ← PKE.Enc(pkkey,K) where K =

(Kfilter,K link,Kdata);
8) P sends (EDS, ctK) to S where EDS =

(EMMfilter,EMMlink,EDXdata);

Figure 4. The Synq protocol.

original study, CHIA processed each dataset individually
and mapped the plaintext datasets between individuals and
unique identifiers for each individual, scrubbed the datasets
of personally identifiying information (with the exception of
the unique identifier), and passed the datasets back to DPH.
DPH then used the unique identifier to link records together.
CHIA was only used as part of the linking process and did
not participate in the analysis. A Synq-based deployment of
the MA DPH initiative would leverage the already-existing
trust assumptions of the MA DPH and CHIA. While MA
DPH would maintain the server S, CHIA would operate the
OPRF service that data owners would communicate with to
generate linking tags. Just as in the original study, CHIA
only needs to remain online throughout Setup.

This two-party, non-colluding assumption has also been
utilized in other practical public policy contexts and thus this
specific instantiation of Synq may also work well for other
studies (e.g., [12], [83]), and similar assumptions commonly
appear in “outsourced MPC” work (e.g., those from Table 2
with topology (T2)) that rely on secret sharing of data
between multiple non-colluding servers. In those works, the
adversary learns all data in plaintext if more than a specified

QueryQ,S(q,EDS) :

1) Q computes Ki ← PKE.Dec(skkey, ctKi
) for each data owner,

where Ki = (K link
i ,Kfilter

i ,Kdata
i );

2) Q parses q = (filter, link, aggregate) and, for each
(Pi, x, value) ∈ filter,
a) computes ftk← ΣMM.Token(Kfilter

i , ⟨x, value⟩);
b) computes ltk← ΣMM.Token(K link

i , ⟨x, value, link⟩);
c) sets filtertk = filtertk ∪ (Pi, ftk, ltk);

3) Q sends (filtertk, aggregate) to S;
4) S initializes a set tags and a multi-map MM;
5) for each (Pi, ftk, ltk) in filtertk,

a) computes ltgs← ΣMM.Query(EMMlink
i , ltk);

b) computes tks← ΣMM.Query(EMMfilter
i , ftk);

c) for each ltgr in ltgs, and each corresponding tkdatar in tks, S
sets MM[ltgr]

+
:= (Pi, tk

data
r );

6) S initializes a table T link with columns X link = Xi ∪Xj ;
7) for each label ltg in MM with MM[ltg] =
⟨(Pi, tk

data
r ), (Pj , tk

data
r′ )⟩ (i.e., where both filters were

satisfied), S creates a linked record r∗ in T link as follows:
a) S retrieves DXr ← ΣDX.Query(DXdata

i , tkdatar ) and DXr′ ←
ΣDX.Query(DXdata

j , tkdatar′ );
b) for each x ∈ Xi, S sets r∗[x] = DXr[x];
c) for each x ∈ Xj , S sets r∗[x] = DXr′ [x];

8) for all treei ∈ aggregate, S post-order traverses each node N ∈
treei and computes the following:
a) if N ≡ (ColumnSum, T link, x),

i) set resN = 0;
ii) for all r ∈ T link, resN ← SHE.Add(resN , r[x]);

b) if N ≡ (TableCount, T link),
i) set resN = 0;

ii) for all r ∈ T link, resN ← resN + 1;
c) if N ≡ (JoinMultiply, T link, x1, x2), for all r ∈ T link,

r[(x1||x2)]← SHE.Multiply(r[x1], r[x2]);
9) for all treei ∈ aggregate, S gets root node R, sets resi ← resR,

and sends resi to Q;
10) for all resi, Q computes resi ← SHE.Dec(sknum, resi);
11) Q computes the final aggregate result;

Figure 5. The Synq protocol. For Query pseudocode simplicity, we
assume that queries involve two data owners, Pi,Pj , though the protocol
easily generalizes to more.

threshold of the compute servers are corrupted. Conversely,
in our proposed OPRF instantiation, if both S and the OPRF
service are corrupted, the adversary learns the PRF key and
can then compute linking tags on arbitrary data—but the
OPRF service never directly sees the plaintext of honest
data owners and therefore an adversary who corrupts the
OPRF server also cannot see this data in plaintext. An
adversary with auxiliary information (e.g., possible inputs
for individual identifiers) may directly evaluate the OPRF in
a dictionary attack in an attempt to learn information about
specific individuals of interest. However, in Section 7.2.3,
we show that similar prior systems reveal significant infor-
mation without any auxiliary information.

6.2. Description of Protocol

6.2.1. Initialization. In Init, the analyst Q generates PKE
key pair (pkkey, skkey). The public key pkkey is later used
by data owners to encrypt STE keys for the analyst. The
analyst Q additionally generates (pknum, sknum) using SHE.



PDMP (P2) medication records

name ssn dob med cnt pyear

r1 AA 1111 010199 oxycodone 14 2013
r2 CC 3333 030305 oxycodone 30 2013
r3 DD 4444 121287 oxycodone 28 2012

Given L = {L1} where L1 = {name, ssn, dob}, XFilter = {med, pyear}, and
XNum = {cnt}, P2 uses FOPRF to compute

ltg1r1 = FOPRF(Eval, ⟨AA||1111|010199⟩),
ltg1r2 = FOPRF(Eval, ⟨CC||3333|030305⟩), and
ltg1r3 = FOPRF(Eval, ⟨DD||4444|121287⟩), and constructs:

EDXdata
2

idr1 DXr[cnt] := SHE.Enc(pknum, 14)

idr2 DXr[cnt] := SHE.Enc(pknum, 30)

idr3 DXr[cnt] := SHE.Enc(pknum, 28)

EMMfilter
2

⟨med||oxycodone⟩ idr1 idr2 idr3

⟨pyear||2013⟩ idr1 idr2

⟨pyear||2012⟩ idr3

EMMlink
2

⟨med||oxycodone||1⟩ ltg1r1 ltg1r2 ltg1r3

⟨pyear||2013||1⟩ ltg1r1 ltg1r2

⟨pyear||2012||1⟩ ltg1r3

Figure 6. Running example for Setup using P2’s dataset from Figure 2.

MATRIS (P1) incident records

name ssn dob diag year

r1 AA 1111 010199 overdose 2013
r2 BB 2222 020201 overdose 2013
r3 CC 3333 030305 overdose 2013

Given L = {L1} where L1 = {name, ssn, dob}, XFilter = {diag, year}, and
XNum = ∅, P1 uses FOPRF to compute

ltg1r1 = FOPRF(Eval, ⟨AA||1111|010199⟩),
ltg1r2 = FOPRF(Eval, ⟨BB||2222|020201⟩), and
ltg1r3 = FOPRF(Eval, ⟨CC||3333|030305⟩), and constructs:

EDXdata
1

(ignored in this example since XNum = ∅)

EMMfilter
1

(ignored in this example since XNum = ∅)

EMMlink
1

⟨med||oxycodone||1⟩ ltg1r1 ltg1r2 ltg1r3

⟨pyear||2013||1⟩ ltg1r1 ltg1r2 ltg1r3

Figure 7. Running example for Setup using P1’s dataset from Figure 2.

pknum is later used by data owners to encrypt numeric data
values within their datasets Ti, in order to support aggregate
queries. Lastly, the server sends (Init) to initialize FOPRF.

6.2.2. Setup. In Setup, each data owner Pi prepares their
dataset Ti for analyses. Each Pi independently executes
Setup with the server S. During Setup, each Pi computes
the link tags for Ti and initializes the following structures:
• DXdata maps randomly generated record identifiers to

SHE-encrypted records.
• MMlink maps a column, value, and linking condition to

the link tags for all the records with that column value.
• MMfilter maps a column and value to encrypted tokens for

all the records containing that column and value.
Encrypting data values. The data owner Pi encrypts

their numeric data values using SHE under the analyst’s
public key (pknum). For all numeric columns x ∈ XNum,
Pi encrypts every value r[x] in T such that ct :=
SHE.Enc(pknum, r[x]). The encrypted records are stored
in DXdata under a randomly generated identifier idr. Pi

then encrypts DXdata, which contains all the SHE-encrypted
records, to generate an encrypted dictionary EDXdata. S later
uses these encrypted values to evaluate aggregate functions.

Generating link tags. After encrypting their data,
Pi generates link tags for each linking condition Lj ∈
L. For each record, Pi creates a link identifier lid :=

r[x1]|| . . . ||r[xj ], where xj ∈ Lj , which is a concatenation
of the values in columns specified in Lj . To obtain the link
tag for each lid, Pi sends the message (Eval, lid) to FOPRF

and receives ltgjr. Since ltgjr is the result of an OPRF, it will
be identical for records with the same lid. These linking tags
later enable the untrusted server to link the corresponding
records without learning the underlying values. For each
column x in the set of filterable columns XFilter, Pi adds
ltgjr to the tuple MMlink[⟨x || r[x] || j⟩], where j is the
index of Lj . MMlink can then be queried based on a column,
value, and linking condition to retrieve the linking tags of
all records that contain that column and value.

Setting up data filters. Using Kdata, Pi computes a to-
ken tkdatar ← ΣDX.Token(K

data, idr) for each record r in Ti.
These tokens are used to retrieve records from the encrypted
dictionary EDXdata and are inserted in MMfilter[⟨x || r[x]⟩]
so that it can be queried based on a column identifier and its
corresponding value. Together, MMfilter and MMlink support
(1) the retrieval of records that satisfy a particular filter,
and (2) the linking of the filtered records. Pi then encrypts
MMfilter and MMlink and encrypts the generated STE keys
under Q’s public key. Pi then sends the encrypted database
EDB = (EDXdata, EMMfilter, EMMlink) and the encrypted
keys to S. Figures 6 and 7 show examples of the Setup
structures computed from our running example in Figure 2.

Resubmission. Since each EDBi is contributed and



Given q from Figure 2, Q constructs and sends (filtertk, [(TableCount, T )]) where:

filtertk = {(P1,ΣMM.Token(Kfilter
1 , ⟨diag,"overdose"⟩), from EMMfilter

1 , retrieves ∅
ΣMM.Token(K link

1 , ⟨diag,"overdose", 1⟩)) from EMMlink
1 , retrieves {ltg1r1, ltg1r2, ltg1r3}

(P1,ΣMM.Token(Kfilter
1 , ⟨year,2013⟩), from EMMfilter

1 , retrieves ∅
ΣMM.Token(K link

1 , ⟨year,2013, 1⟩)) from EMMlink
1 , retrieves {ltg1r1, ltg1r2, ltg1r3}

(P2,ΣMM.Token(Kfilter
2 , ⟨med,"oxycodone"⟩), from EMMfilter

2 , retrieves {idr1, idr2, idr3}
ΣMM.Token(K link

2 , ⟨med,"oxycodone", 1⟩)) from EMMlink
2 , retrieves {ltg1r1, ltg1r2, ltg1r3}

(P2,ΣMM.Token(Kfilter
2 , ⟨pyear,2013⟩), from EMMfilter

2 , retrieves {idr1, idr2}
ΣMM.Token(K link

2 , ⟨pyear,2013, 1⟩))} from EMMlink
2 , retrieves {ltg1r1, ltg1r2}

In (4) and (5), S takes the intersec-
tion of linking tags to determine the
final record ids to include in T link:

{ltg1r1, ltg1r2, ltg1r3}
∩ {ltg1r1, ltg1r2, ltg1r3}
∩ {ltg1r1, ltg1r2, ltg1r3}
∩ {ltg1r1, ltg1r2}
= {ltg1r1, ltg1r2},

S uses corresponding record ids
{idr1, idr2} to link data from
EDXdata

1 and EDXdata
2 in T link.

Figure 8. Running example for Query using the datasets and query from Figure 2 and the Setup-generated structures from Figure 6 and 7.

stored independently, a data owner Pi can rerun Setup if
they need to resubmit their data prior to the query phase. In
this case, S replaces any structures previously uploaded by
Pi with the new ones. This allows data owners to correct
mistakes without affecting other owners’ contributions.

6.2.3. Query. In Query, the analyst Q and server S evaluate
queries from the Synq-QL language from Section 5. Q uses
its secret key skkey to decrypt each ctKi

and receive Ki =
(Kfilter

i ,K link
i ) for Pi. For each filter (Pi, x, value), Q uses

Kfilter
i to compute a filter token ftk based on the filter’s

column x and value, and uses K link
i to compute a link token

ltk based on x, value, and linking index link.
Linking. S uses each filter token ftk to query EMMfilter

for tokens to query EDXdata for encrypted records, and each
link token ltk to query EMMlink for link tags. S uses a multi-
map MM to map link tags to pairs (Pi, tk

data
r ) so it can

retrieve linked records from each EDXdata
i using the tokens

corresponding to every link tag. Using MM, S populates a
new table Tlink such that all data corresponding to the same
link tag is treated as a consolidated record. Each row of Tlink

represents data from one linked record.
Aggregates. Once data has been linked, S uses Tlink to

evaluate Synq-QL aggregate trees composed of the base op-
erators from Definition 5.1. Trees are evaluated as follows:

• ColumnSum(T, x): Given a table and column, S adds the
corresponding SHE ciphertexts.

• TableCount(TableCount): For each record in T , S incre-
ments a counter, which is then returned.

• JoinMultiply(T, x1, x2): For each record in T , S performs
multiplication using r[x1] and r[x2], which have been
encrypted using SHE. The result is stored in a new column
r[(x1||x2)]. The updated table is returned.

S returns a resi resulting from the evaluation of each tree. Q
decrypts each resi using its secret key sknum and performs
any final computation based on their query workload. For
example, using the instantiations in Appendix A, for an Sum
or Count function, Q performs no additional computation,
but for an Average, Variance, or Regression function, Q
receives sub-aggregates which it uses to compute the final
result. Figure 8 shows how Query (using the Synq-QL query
from Figure 2) interacts with the structures from Figure 6.

7. Security

7.1. Definitions

Recall we formalize security in the hybrid/ideal-world
paradigm [23], which requires that a protocol execution
in the FOPRF-hybrid world (which assumes existence of
an ideal, trusted OPRF functionality) is indistinguishable
from one in the ideal world. Figure 9 defines the ideal
functionality for Synq. Both the hybrid-world and the ideal-
world executions take place between an environment Z and
an adversary. In the hybrid-world execution, we denote the
adversary A. In the ideal-world, we denote the adversary S
to represent a simulator. Both executions include the parties
S,P1, ...,Pn, and Q as defined in Section 6. We use the
semi-honest model as Synq is designed for policy studies
where parties work collectively to ensure study success.

Corruptions. We consider two kinds of corruptions: (1)
the server S and up to n−1 data owners or (2) the analyst Q.
If S and up to n−1 data owners are corrupted, S only learns
the leakage during protocol execution, and the owners learn
nothing more than their own inputs. If Q is corrupted, it
only learns results of its queries and is trusted not to collude
with any other party. For completeness, we note that the
ideal OPRF functionality, by definition, cannot be corrupted
by the adversary. For example, if the OPRF functionality
is instantiated using a separate OPRF service as in Section
6.1.1, our corruption model implies that the OPRF service
is fully trusted and thus does not collude with the adversary.

Hybrid-world execution. In the hybrid-world, every
party has access to FOPRF. The environment Z takes as
input a string z ∈ {0, 1}∗ and chooses a set of parties I for
A to corrupt, where I is selected according to one of the
defined categories of corruptions. Z sends I to A, which
corrupts the parties in I and has access to their inputs and
outputs, as well as their intermediate states during execution.
Z chooses all the data owners’ inputs. In the query phase, Z
selects m = poly(k) queries q1, . . . , qm for Q. The parties
then execute the protocols to setup and query Synq. At the
end of the execution, A sends an arbitrary message to Z ,
which outputs a bit b. We denote this bit HybridZ,A(k).

Ideal-world execution. In the ideal-world, all parties
have access to the ideal functionality FΛ,L

Synq (Figure 9). The



FΛ,L
Synq = (Init,Setup,Query) is parameterized with a leakage profile

Λ = (LI,LS,LQ) and linking conditions L = [⊥, L1, . . . , Lm]. It
interacts with parties {P1, . . . ,Pn}, server S, analyst Q, and an
ideal adversary S using the following operations:
• Upon receiving (Init) from Q and S, the functionality sends
LI(⊥) to S.

• Upon receiving (Setup, Ti) from Pi, store Ti. If the server S is
corrupted, send LS(Ti) to the simulator S. For each record in Ti,

(1) Sample rid← {0, 1}∗, and,
(2) Add rid to Ti such that r[“rid”] = rid.

• Upon receiving (Query, q) = (filter, link, aggregate)),
(1) Initialize tables (T ′

1, . . . , T
′
n) such that T ′

i = Ti,
(2) (Filtering) For each (Pi, x, value) in filter, for each r ∈ T ′

i ,
if r[x] ̸= value, remove r from T ′

i .
(3) Initialize an empty multi-map MM.
(4) (Linking) If link is not empty, for each T ′

i , for each r ∈ T ′
i

and xi ∈ Llink, append r to MM[(r[x0], . . . , r[x|Llink|])].
(5) (Aggregate) If link is empty, use (T ′

1, . . . , T
′
n) to compute

aggregate and store the output in res. Otherwise, use MM
to compute aggregate and store the output in res.

(6) If S is corrupted, return LQ(T1, . . . , Tn) to S and res to Q.
(7) If Q is corrupted, return res to S.

Figure 9. FΛ,L
Synq : The Synq functionality.

environment Z takes as input a string z ∈ {0, 1}∗ and
chooses a set of parties I for the adversary to corrupt, where
I is selected according to one of the defined categories of
corruptions. Z sends I to the simulator S and FΛ,L

Synq. Z then
chooses the inputs for all the parties Pi and the queries for
the analyst Q. S receives the inputs for all the parties in I
and interacts with FΛ,L

Synq on behalf of the corrupted parties.

• Initialization. S and Q send (Init) to FΛ,L
Synq.

• Setup. Each honest Pi sends (Setup, Ti) to FΛ,L
Synq.

• Query. Q receives queries q1, . . . , qm from Z , where each
query is of the form qj = (filter, link, aggregate). If Q is
honest, it sends (Query, qj) to FΛ,L

Synq.
At the end of the execution, S sends an arbitrary message to
Z which then outputs a bit b, which we denote IdealΛZ,S(k).
Definition 7.1 (Λ-security of Synq). Synq is Λ-secure if

for all PPT semi-honest adversaries A, there exists a
PPT ideal adversary S such that for all PPT standalone
environments Z , for all z ∈ {0, 1}∗,

|Pr[HybridZ,A(k) = 1]− Pr[IdealΛZ,S(k) = 1]|
≤ negl(k).

7.2. Formal Analysis

We now formally analyze the security of Synq, which
uses a response-revealing multi-map encryption scheme
ΣMM, a response-revealing dictionary encryption scheme
ΣDX, a CPA-secure public-key encryption scheme PKE, and
a CPA-secure somewhat homomorphic encryption scheme
SHE. We prove the following properties in the FOPRF-hybrid
world with respect to the leakage function ΛSynq:
• Synq is ΛSynq-secure when S and up to (n−1) data owners

are corrupted, and;
• Synq only reveals query results to a semi-honest Q.

7.2.1. Server and Data Owners. We first analyze the black-
box leakage of Synq when an adversary corrupts the server
and up to (n−1) data owners. A black-box leakage analysis
is used to express the leakage of a system in terms of the
leakage of its building blocks, which can be switched out in
order to obtain better security and/or efficiency properties.

Black-box leakage analysis. Suppose the leakage
profiles of the response-revealing encrypted dictionary
scheme ΣDX and the response-revealing encrypted multi-
map scheme ΣMM are

ΛDX = (LDX
S ,LDX

Q ) = (pattDXS , pattDXQ ),

ΛMM = (LMM
S ,LMM

Q ) = (pattMM
S , pattMM

Q ),

where ΛMM is content oblivious [74], then Synq is ΛSynq-
secure where:

ΛSynq = (LI = ⊥,LS,LQ),

LS = (pattDXS (DXdata
i ), pattMM

S (MMfilter
i ),

pattMM
S (MMlink

i )), for all Pi, and

LQ = (pattDXQ (DXdata
j ), pattMM

Q (MMfilter
j ),

pattMM
Q (MMlink

j ), op,Glink), for all queried Pj .

where op = (filter, link, aggregate) is the analyst’s query,
and Glink is the linking graph of the queried records.

The linking graph Glink = (V,E) represents the leakage
revealed to the server during a query. The resulting Glink of
q = (filter, link, aggregate) contains one vertex vr for each
record r that satisfies at least one of the filters in q. Each
vertex has 2 attributes: (1) rid, which is a unique identifier
for the record r, and (2) filterlist, which identifies the filter(s)
in q that output the record r. We note that the list filterlist
need not contain the exact filter that output the record, but
for convenience we will refer to a filter as (Pi, x, value).
Each edge e = (vr, vr′) denotes a link between r and r′,
i.e., r[x] = r′[x], for all x ∈ Llink, where Llink is q’s linking
condition. If link is empty, Glink contains no edges. Our
simulator is stateful, and maintains a global linking graph
G∗, or the union of all the individual query linking graphs.
To compute the union of two linking graphs, any vertices
sharing the same rid attribute are combined to form one new
vertex. The new vertex has the same rid and filterlist set to
the union of all the individual filterlist attributes—forming
a list of all the filters that output the same record. Then,
Synq is secure as stated in the following theorem.
Theorem 7.2. If SHE and PKE are CPA-secure, ΣDX is ΛDX-

secure, ΣMM is ΛMM-secure, then Synq is ΛSynq-secure.

The proof sketch of Theorem 7.2 is in Appendix B.
Concrete leakage analysis. Since the leakage profile of

Synq depends on the leakage profiles of ΣDX and ΣMM, we
now instantiate ΣDX and ΣMM with a standard version of the
Πbas scheme [25] to demonstrate the concrete leakage of a
potential implementation. (We emphasize that other choices
of ΣDX and ΣMM are possible.) Using Πbas, the leakage
patterns ΛDX, ΛMM are as follows:

ΛDX = (LDX
S ,LDX

Q ) = (size, qeq),



ΛMM = (LMM
S ,LMM

Q ) = (size, (qeq, vol)),

where size outputs the total number of values in the data
structure, qeq is the query equality pattern (reveals query
repetitions), and vol is the volume pattern (reveals the num-
ber of results corresponding to a query). Note that ΛMM is
content oblivious. Then, Synq’s concrete leakage profile is:

• (Init) No information is leaked during initialization.
• (Setup) During setup, the total number of values N for

each dictionary and multi-map is leaked. Concretely, the
following information is leaked for each owner Pi:
– Ni, the total number of records in the dataset Ti,
– |XFilter

i |, the number of filterable columns in Ti.
• (Query) During a query, qeq and vol for all the queried

data structures is leaked. Concretely, given the query q =
(filter, link, aggregate) the leakage is as follows:
– op, which represents the list of filters, the linking

condition, and the aggregations that the query contains,
– for each filter (Pi, x, value), Nx=value

i , the number of
records for data owner Pi that satisfy the filter,

– for each record that satisfies at least one filter, the
following is leaked: (1) the previous query history of
the record, and (2) all links to the record for the linking
condition Llink, where links exist between a pair of
records if they have the same values for the columns
in the linking condition Llink.

Figure 10 provides a visual representation of the concrete
leakage profile’s output against the running example query
from Figure 2. op reveals a per-data owner list of filters, the
linking condition, and the aggregate operation of a query.
Glink captures the information revealed to the server during
the computation of the filters, linking and aggregates. For ev-
ery record matched by any filter, this includes the matching
filter and the links resulting from the linking condition.

7.2.2. Analyst. Synq guarantees that a semi-honest analyst
Q cannot learn more information than the results of its
queries. Intuitively, this holds because the simulator S re-
ceives the (corrupted) Q’s queries from the environment Z ,
and forwards them to the ideal functionality to receive the
results. S then sends the results (encrypted with Q’s public
key) to Q. Then, Q’s view in both worlds are identical. We
defer the security proof to the full version of our paper. We
note that, for some datasets, Q can potentially learn fine-
grained information about the plaintext datasets even when
only using aggregate queries. This is an orthogonal data
privacy concern present in any system that supports analytics
over encrypted data. This concern could be addressed using
system-level mitigations such as query auditing tools or rate
limits (see [89] for more detailed limitation procedures).
Data-level techniques such as differential privacy [36] can
also be used with Synq without changing the protocol or ex-
isting security guarantees, though we note that data privacy
with respect to analysts is not always a requirement even in
real-world deployments of privacy-preserving systems (e.g.,
the Boston study computed exact aggregates [67]). In the
MA DPH setting, analysts are trusted and can execute any

queries of their choice over the input datasets.

7.2.3. Implications of Leakage. The leakage of a system
expresses the information revealed to an adversary as a
function of the plaintext data and queries. Any efficient
encrypted system, even systems that are based on FHE
or MPC, will reveal some leakage about the underlying
data and queries. This leakage might be small (such as
the size of the plaintext) or large (such as DTE’s leakage
which reveals all the correlations present in the plaintext).
Making the leakage function explicit allows us to express
trade-offs between functionality and security. However, a
leakage function only describes the leakage—it does not
describe if the leakage can be exploited effectively or if
the leakage is appropriate for the application setting. In this
section, we will describe prior work on exploiting leakage
and explain our rationale for why Synq’s leakage might
present a reasonable trade-off between functionality and
efficiency in the public policy setting.

Leakage attacks. Leakage attacks, where the adversary
exploits the leakage profile of an STE scheme in an attempt
to reconstruct information about the data or the queries, have
received significant attention in the literature. Islam et al.
[53] were the first to investigate leakage attacks. More recent
works (e.g., [16], [24], [48]–[50], [62]–[64], [70], [71], [75])
have relaxed assumptions and targeted other profiles. While
these attacks have clear theoretical interest, [55] shows their
practical impact varies and an attack’s assumptions must be
carefully analyzed in the context of a particular system.

Comparison to prior work. Any system supporting
aggregate queries over multiple datasets has to choose a
trade-off between functionality and security. From Table 2,
the Boston wage equity study [67], Jana [51], and i2b2 [80]
most closely satisfy our usability and expressivity consid-
erations. Each of these works makes a different trade-off.
The Boston study uses a fixed schema and protocol to
enable computation of an average, revealing only the sizes
of the underlying tables. However, their system can only be
used for a single aggregate. Conversely, supporting multiple
schemas and repeated complex aggregates inevitably leads
to greater leakage. In particular, the linking of records will
always leak some information to the linking server—short
of using FHE and a prohibitive amount of computation.
Jana uses either outsourced MPC or PPE, depending on the
query. Outsourced MPC leverages interactive computation to
reduce leakage to any individual compute server. However,
the sizes of the plaintext are still leaked, and if the adversary
corrupts more than a threshold of servers, it learns Jana’s
plaintext data immediately. In contrast, even if the non-
collusion assumption in Synq (between the server and the
OPRF service, see 6.1.1) is violated, the adversary never di-
rectly learns the plaintext data in the absence of auxiliary in-
formation. The PPE-based approach allows Jana to perform
more efficient queries, but also leaks correlations in the data
to any adversary with access to the server. Further, Jana only
supports linking using plaintext data or DTE, which reveals
all the links to the server at setup time. i2b2 only supports
secure sums, and performs filtering over plaintext data. In



LI = ⊥

LS =

{
P1 : 3 records, 2 filterable columns
P2 : 3 records, 2 filterable columns

}
LQ =

(
op(q),Glink

)
,where

op(q) =
([

(P1 : f1, f2), (P2 : f3, f4)
]
,

L1,
[
(TableCount, T )

])
and Glink is shown on the right

L1

L1

P1 P2v1

{f1, f2}
[AA,1111,010199]

v2

{f1, f2}
[BB,2222,020201]

v3

{f1, f2}
[CC,3333,030305]

v4

{f3, f4}
[AA,1111,010199]

v5

{f3, f4}
[CC,3333,030305]

v6

{f3}
[DD,4444,121287]

Figure 10. Running example for the concrete leakage generated by the setup process illustrated in Figure 6 and Figure 7 and the query q from Figure 2.
The [data records] shown in Glink are for illustrative purposes and are not actually included in the leakage.

Synq, we use SHE to support aggregates, and an OPRF to
support linking. Our use of pseudorandom tags and revealing
a subset of them at query time is a reasonable compromise
between full link leakage and prohibitive computation.

Our rationale. We now explain why the design of Synq
and the context in which it is used allows for security better
than or equivalent to existing solutions. In the context of
the Boston study, the requirement was to compute a one-
time average, given a standardized schema. Synq could be
used to carry out the same one-time average computation.
Both the Boston study and Synq reveal the sizes of the
underlying tables and intermediate sums to the analyst,
and since linking is not required, Synq does not have any
additional leakage. However, Synq would also allow for re-
computation of these averages with different filters, whereas
the Boston study would need to perform setup again for any
further computation. When compared to the trusted server
solution used for MA DPH, Synq only reveals a small, well-
defined leakage to a semi-honest server. If the server S and
up to n− 1 data owners are corrupted, the server learns the
leakage ΛSynq during the protocol execution and the data
owners learn nothing more than their own inputs.

Impact of leakage. First, we consider what can be
learned from the leakage profile ΛSynq alone. ΛSynq is a
function of columns in the pre-specified linking conditions
L = [⊥, L1, . . . , Lm] and in XFilter. Specifically, Glink is a
function of columns in L = [⊥, L1, . . . , Lm] and the queries,
and pattDXQ (DXdata

j ), pattMM
Q (MMfilter

j ), pattMM
Q (MMlink

j ) is a
function of XFilter and the queries. Given this observation as
well as the CPA-security of the SHE scheme, we know that
data contained in columns that are not in L or XFilter cannot
be reconstructed. In the context of public policy studies,
inference attacks (i.e., attacks that require distributional
knowledge of data and/or queries) could also be a concern
since the data could come from known distributions (e.g.,
demographic data from certain geographical regions). We
stress, however, that because Synq makes use of standard
STE primitives, these attacks could (potentially) only be
executed by a persistent adversary that has access to the
server throughout the query execution. On the other hand,
PPE-based solutions are prone to inference attacks even by a
single-snapshot adversary that only sees the encrypted data
once and does not have access to queries. Finally, Synq
also reveals the linking condition and the aggregate query
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Figure 11. (a) Setup time for an individual data owner. (b) Total size of
EDB and keys of individual owners in Setup.

to the adversary. Since the linking conditions are public and,
in many studies, the aggregate query is ultimately revealed
due to study publication, we believe both components are
acceptable to leak given Synq’s public policy context.

8. Empirical Evaluation

In this section, we describe our prototype implemen-
tation and evaluation of Synq. The source code (which
is written in Python 3.10) can be found at https://
github.com/encryptedsystems/synq.

Cryptographic primitives. The Synq protocol makes
black-box use of several cryptographic primitives. We in-
stantiate SHE with the implementation of the CKKS scheme
for approximate somewhat homomorphic encryption [28]
from Tenseal 0.3.1 [15]. We instantiate ΣDX and ΣMM

with response-revealing variants of the SimpleEDX and
PiBaseEMM schemes from the Arca 0.1 package [37], [38].
Both schemes are implementations of the Πbas scheme by
Cash et al. [25] for dictionaries and multi-maps respectively.
For symmetric encryption and PRFs within ΣDX and ΣMM,
we use AES-256 and SHA-512 respectively from Arca’s
provided cryptographic primitives. For PKE, we similarly
use Arca’s primitives for RSA-2048. Finally, we instantiate
the FOPRF functionality using the oprf 3.0.0 package [65].

Environment. We conducted our experiments locally on
a 2021 MacBook Pro (macOS Monterey 12.3.1, M1 Max
chip, 64 GB of memory). The main server and OPRF server
ran persistently as background processes. Clients interacted
with these servers via localhost gRPC connections. We mea-
sured the time of each component by running the experiment
5 times and reporting the average time over 5 runs.

https://github.com/encryptedsystems/synq
https://github.com/encryptedsystems/synq


Aggregate Token size (bytes) Query time (s)

Sum 81 5.62
Average 81 5.69
Count 66 4.31

Variance 81 139
Regression (1-col) 106 282
Regression (2-col) 116 645

TABLE 3. Average execution time and increase in query token size for
aggregate functions based on the instantiations in Appendix A, assuming
two filters and a linked table with 105 records from two data owners.

Datasets. Obtaining real-world datasets with PII for
linking is challenging due to privacy concerns, licensing
costs, and is likely inadvisable due to the privacy risks and
consent issues that would be involved. We generated sev-
eral healthcare-themed example datasets using the faker
package [40]. We used faker to generate a universe of 1
million “people”, each with up to 15 randomly generated
attributes (such as first name, data of birth, social security
number, etc.). Then, we randomly assigned between 7 and
15 columns to each of the datasets. From there, we saved
between 25% and 100% of the people in each of the datasets.
This allowed us to capture substantial links between records
in datasets (as observed in the MA DPH report) while also
allowing us to demonstrate that we could perform operations
over columns that did not appear in multiple datasets.

For Setup, we assigned columns in Synq based on the
semantic meaning of the data we generated. This resulted
in experiments with 1 linking condition (consisting of 5
columns), 6 numerical columns (XNum), and 7 filterable
columns (XFilter). For our Query experiments, we tweaked
our data generation such that the linked table consistently
included 105 records so that differences in the number of
linked records would not impact our observations.

Summary of results. To summarize our evaluation:
• Our Setup algorithm is the most computationally expen-

sive part of the protocol. Figure 11(a) shows that, at
1 million records, Setup takes just under 4.5 hours of
compute time. About 87% of Setup time (Figure 11) was
spent in step (2) which computes several SHE-encrypted
values and populates DXdata (prior to encryption).

• The encrypted structures result in a 7.61× size increase
over the size of the plaintext CSV (at 1 million records,
the plaintext is 155MB and the encrypted Synq structures
are 1182MB, as shown in Figure 11(b)).

• The query bandwidth is small. Each aggregate function
adds at most 116 bytes to the token (Table 3). Each filter
adds between 19 and 22 bytes to the query token size.
As expected, the query size scales linearly according to
the number of filters and aggregate functions in the query,
and does so relatively consistently.

• There is a performance gap between functions that do
not involve SHE multiplications (Sum,Average,Count)
and those that do (Variance,Regression). As shown in
Table 3, while Sum,Average, and Count queries took
at most 6 seconds to complete, Variance and Regression
queries took at least 2 minutes (and at most 11 minutes)

to complete. For those latter queries, approximately 81%
of the Query time is spent in the JoinMultiply handler.

We did not perform system-level optimization of our pro-
totype. For instance, the clients are single-threaded but the
Πbas scheme (used for ΣMM and ΣDX) and other parts of
Setup are parallelizable. To focus on Synq’s design and
methodology, we defer system optimizations to future work.

Full version. Our paper’s full version describes addi-
tional functionality extensions to Synq and details on the
query survey conducted on the MA DPH report.

Acknowledgements

The authors would like to thank Brown’s Data Science
Institute [2] for providing initial funding for this project,
Kevin Wilson and David Yokum from Brown’s Policy
Lab [3] for the discussions that led to this project, and
Zheguang Zhao for their help in the initial stages of the
project. Zachary Espiritu was supported in part by the Randy
Pausch Undergraduate Summer Research Award at Brown
University. Marilyn George would like to thank Nishanth
Chandran, Divya Gupta, and her other collaborators at Mi-
crosoft Research India for early discussions about analytics
on encrypted data. Lucy Qin was supported by the Graduate
Research Fellowship Program funded by the National Sci-
ence Foundation, and would like to thank her previous team
at Boston University and the Boston Women’s Workforce
Council for experiences and insights in deploying real-world
cryptographic tools that have impacted this work.

References

[1] “Center for health information and analysis.” [Online]. Available:
https://www.chiamass.gov/

[2] “Data science institute at brown.” [Online]. Available: https:
//dsi.brown.edu/

[3] “The policy lab at brown university.” [Online]. Available: https:
//thepolicylab.brown.edu/

[4] “Boston women’s workforce council,” 2023. [Online]. Available:
https://thebwwc.org/

[5] S. Addanki, K. Garbe, E. Jaffe, R. Ostrovsky, and A. Polychroniadou,
“Prio+: Privacy preserving aggregate statistics via boolean shares,” in
Security and Cryptography for Networks, C. Galdi and S. Jarecki,
Eds. Cham: Springer International Publishing, 2022, pp. 516–539.

[6] A. Agarwal, S. Peceny, M. Raykova, P. Schoppmann, and K. Seth,
“Communication-efficient secure logistic regression,” Cryptology
ePrint Archive, Paper 2022/866, 2022.

[7] E. H. Allen, H. Samuel-Jakubos, and T. A. Waidmann, “Data
sharing in cross-sector collaborations,” The Urban Institute, Tech.
Rep., Jul. 2021. [Online]. Available: https://www.urban.org/research/
publication/data-sharing-cross-sector-collaborations

[8] Antonis Papadimitriou, Nishanth Chandran, Ranjita Bhagwan, Ra-
machandran Ramjee, Andreas Haeberlen, Harmeet Singh, Abhishek
Modi, and Saikrishna Badrinarayanan, “Big Data Analytics over
Encrypted Datasets with Seabed,” in Proceedings of the 12th USENIX
Conference on Operating Systems Design and Implementation, ser.
OSDI’16. Savannah, GA: USENIX Association, Nov. 2016.

[9] Apple and Google, “Exposure notification privacy-preserving
analytics (enpa) white paper,” Tech. Rep., 4 2021. [Online].
Available: https://covid19-static.cdn-apple.com/applications/covid19/
current/static/contact-tracing/pdf/ENPA White Paper.pdf

https://www.chiamass.gov/
https://dsi.brown.edu/
https://dsi.brown.edu/
https://thepolicylab.brown.edu/
https://thepolicylab.brown.edu/
https://thebwwc.org/
https://www.urban.org/research/publication/data-sharing-cross-sector-collaborations
https://www.urban.org/research/publication/data-sharing-cross-sector-collaborations
https://covid19-static.cdn-apple.com/applications/covid19/current/static/contact-tracing/pdf/ENPA_White_Paper.pdf
https://covid19-static.cdn-apple.com/applications/covid19/current/static/contact-tracing/pdf/ENPA_White_Paper.pdf


[10] A. Arasu, S. Blanas, K. Eguro, M. Joglekar, R. Kaushik, D. Koss-
mann, R. Ramamurthy, P. Upadhyaya, and R. Venkatesan, “Secure
database-as-a-service with cipherbase,” in Proceedings of the 2013
ACM SIGMOD International Conference on Management of Data,
ser. SIGMOD ’13. New York, NY, USA: Association for Computing
Machinery, 2013, p. 1033–1036.

[11] D. Archer, A. O’Hara, R. Issa, and S. Straus, “Sharing
sensitive department of education data across organizational
boundaries using secure multiparty computation,” Galois,
Inc. and Georgetown University, Tech. Rep., 5 2021.
[Online]. Available: https://github.com/Ra1issa/ra1issa-website/blob/
main/NCES Demo Paper technical.pdf

[12] D. W. Archer, D. Bogdanov, Y. Lindell, L. Kamm, K. Nielsen,
J. I. Pagter, N. P. Smart, and R. N. Wright, “From Keys to
Databases—Real-World Applications of Secure Multi-Party Compu-
tation,” The Computer Journal, vol. 61, no. 12, pp. 1749–1771, 09
2018.

[13] L. Bangalore, M. H. F. Sereshgi, C. Hazay, and M. Venkitasubrama-
niam, “Flag: A framework for lightweight robust secure aggregation,”
in Proceedings of the 2023 ACM Asia Conference on Computer and
Communications Security, ser. ASIA CCS ’23. New York, NY, USA:
Association for Computing Machinery, 2023, p. 14–28.

[14] J. Bater, G. Elliott, C. Eggen, S. Goel, A. Kho, and J. Rogers, “Sm-
cql: Secure querying for federated databases,” Proc. VLDB Endow.,
vol. 10, no. 6, p. 673–684, feb 2017.

[15] A. Benaissa, B. Retiat, B. Cebere, and A. E. Belfedhal, “Tenseal: A
library for encrypted tensor operations using homomorphic encryp-
tion,” 2021.

[16] L. Blackstone, S. Kamara, and T. Moataz, “Revisiting Leakage Abuse
Attacks,” in 27th Annual Network and Distributed System Security
Symposium (NDSS 2020). San Diego, California, USA: The Internet
Society, 2020.

[17] D. Bogdanov, “Sharemind: programmable secure computations with
practical applications,” Ph.D. dissertation, University of Tartu, 2013.

[18] D. Bogdanov, L. Kamm, B. Kubo, R. Rebane, V. Sokk, and
R. Talviste, “Students and taxes: a privacy-preserving study using se-
cure computation,” Proceedings on Privacy Enhancing Technologies,
vol. 2016, no. 3, pp. 117–135, 2016.

[19] K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMahan,
S. Patel, D. Ramage, A. Segal, and K. Seth, “Practical secure aggrega-
tion for privacy-preserving machine learning,” in Proceedings of the
2017 ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS ’17. New York, NY, USA: Association for
Computing Machinery, 2017, p. 1175–1191.

[20] P. Borrello, A. Kogler, M. Schwarzl, M. Lipp, D. Gruss, and
M. Schwarz, “ÆPIC leak: Architecturally leaking uninitialized data
from the microarchitecture,” in 31st USENIX Security Symposium
(USENIX Security 22). Boston, MA: USENIX Association, Aug.
2022, pp. 3917–3934.

[21] L. Burkhalter, A. Hithnawi, A. Viand, H. Shafagh, and S. Ratnasamy,
“TimeCrypt: Encrypted data stream processing at scale with crypto-
graphic access control,” in 17th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 20). Santa Clara, CA:
USENIX Association, Feb. 2020, pp. 835–850.
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Appendix A.
Examples of Aggregate Composition

Our scheme supports Sum, Count, Average, Variance,
linear Regression, and multiple Regression, where:
• (Sum, x) outputs the sum of values in x.
• (Count) outputs the total number of records in the linked

table after filtering and linking.
• (Average, x) outputs the average of values in x.
• (Variance, x) outputs the variance of values in x.
• (Regression, y, x) outputs a linear regression where y is

the dependent variable and x is an independent variable.
• (Regression, y, x1, x2) outputs a multiple or binary logis-

tic regression where y is the dependent variable and x1, x2

are independent variables.
Each aggregate function is instantiated using the base oper-
ators (Definition 5.1) as follows:

Sum. (ColumnSum, T, x).
Count. (TableCount, T ).
Average. avg(x) = (ColumnSum, T, x)/(TableCount, T ).
Variance. The variance of column x of some table T is

defined as follows, where n is the number of values in x:

var(x) =
1

n

∑
r∈T

(r[x]− avg(x))2 =
1

n

(∑
r∈T

r[x]2

)
− avg(x)2

The server computes n using TableCount,
avg(x) using Average, and

∑
r∈T r[x]2 ←

(ColumnSum, T, (JoinMultiply, T, x, x)). Finally, given
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the values n,
∑

r[x]2, and x̄, the analyst computes the
variance of the column x.

Linear Regression. A linear regression for an indepen-
dent column x and dependent column y is defined by the
formula: y = b1x+b0. Let both the columns x and y belong
to some table T . If both x and y contain n values, the
coefficients b0 and b1 are defined as follows:

b1 =
n
∑

r∈T r[x] · r[y]−
(∑

r∈T r[x]
) (∑

r∈T r[y]
)

n
∑

r∈T r[x]2 −
(∑

r∈T r[x]
)2

b0 =

∑
r∈T r[y]− b1

(∑
r∈T r[x]

)
n

The server computes the sums
∑

r[x],
∑

r[y] using
ColumnSum, n using TableCount, and

∑
r[x]2 using

JoinMultiply, as shown in the description for computing the
variance. The server computes

∑
r[x] · r[y] as follows:∑

r∈T

r[x] · r[y]← (ColumnSum, T, (JoinMultiply, T, x, y)).

If the columns x and y belong to different tables, say T1

and T2, the table T is replaced by the linked table T1 ▷◁ T2

for all the aggregate computations. Finally, given the values
of
∑

r[x],
∑

r[y],
∑

r[x]2,
∑

r[x] · r[y], and n, the analyst
computes the regression coefficients b0 and b1.

Multivariate Regression. A multivariate regression for
independent columns x1, ..., xp and dependent column y is
defined by y = b0 + b1x1 + b2x2 + · · · + bpxp, such that,
bT = [b0, b1, . . . , bp−1] =

(
XTX

)−1
XTY , where X is

the matrix such that the ith column contains the values of
column xi and Y is the vector contains the values of column
y. Let the column xi belong to table Ti, and the column
y belong to table T . For simplicity, assume that all the
columns contain n values, and that all the records are linked.
In the following, we overload notation and write

∑
T x1 to

denote
∑

r∈T r[x1].
For example, in the case of two independent variables,

the coefficients b0, b1, b2 are computed as follows:

b0 =

∑
r∈T y − b1

(∑
r∈T x1

)
− b2

(∑
r∈T x2

)
n

b1 =

∑
T2

x2
2 ·
∑

T1 ▷◁ T x1y −
∑

T1 ▷◁ T2
x1x2 ·

∑
T2 ▷◁ T x2y∑

T1
x2
1 ·
∑

T2
x2
2 −

(∑
T1 ▷◁ T2

x1x2

)2
b2 =

∑
T1

x2
1 ·
∑

T2 ▷◁ T x2y −
∑

T1 ▷◁ T2
x1x2 ·

∑
T1 ▷◁ T x1y∑

T1
x2
1 ·
∑

T2
x2
2 −

(∑
T1 ▷◁ T2

x1x2

)2
The computation of a multivariate regression then requires
the sums

∑
r[xi],

∑
r[xi]·r[xj ],

∑
r[xi]·r[y],

∑
r[xi]

2 and
n, which are computed as in the case of linear regressions.
Similarly, the server uses JoinMultiply and ColumnSum to
compute these values. Given the aggregates, the analyst can
compute the coefficients of the multivariate regression.

Binary Logistic Regression. A binary logistic regres-
sion for independent variables x1, . . . , xp and dependent
variable y is described by the following formula y =

eb0+b1x1+···+bpxp

1+eb0+b1x1+···+bpxp
. The coefficients bi are derived using

the same formula as for linear and multivariate regression,
and therefore, binary logistic regressions are not explic-
itly labeled as an aggregate function but encompassed by
Regression. After the intermediate sums are computed, sim-
ilar to the linear and multivariate regressions, the analyst
computes the coefficients bi of the binary logistic regression.

Appendix B.
Proof Sketch of Theorem 7.2

Proof. Let SimDX be the simulator that exists by the
ΛDX-security of ΣDX and SimMM be the simulator that
exists by the ΛMM-security of ΣMM. Then we describe the
simulator S that simulatesA, in the context of the corruption
of the server S and some subset of up to n−1 data owners.
• (simulating Init) S generates the keys

– (pknum, sknum)← SHE.Gen(1k),
– (pkkey, skkey)← PKE.Gen(1k),
and initializes a global linking graph G∗.

• (simulating Setup) For each honest data owner, S receives
the setup leakage. S computes the following:
– EDXdata ← SimDX(LDX

S (DXdata)),
– EMMlink ← SimMM(LMM

S (MMlink)),
– EMMfilter ← SimMM(LMM

S (MMfilter)).
S sends (EDS, ctK) to the server S where
ctK = PKE.Enc(pkkey, 0

k) and EDS = (EMMfilter,

EDXdata,EDXlink). For each corrupt data owner Pi, S
has access to Ti, and S simulates the functionality FOPRF

as described in Figure 3.
• (simulating Query) For each query q, S receives the

leakage op = (filter, link, aggregate), the linking graph
Glink = (V,E), and the respective query leakage of the
encrypted structures. Then, S computes the tokens:
– (data tokens) for each (encrypted) record r that is output

by some filter (Pi, x, value):
1) S initializes a dictionary DXr,
2) for every numeric column x ∈ XNum, it sets

DXr[x] = SHE.Enc(pknum, 0
k),

3) since ΣDX is response-revealing, S computes the to-
ken using the response DXr and the query leakage:
tkdatar ← SimDX(LDX

Q (DXdata
i , q),DXr),

– (link tags) S sets the link tags for vertices in Glink:
1) for all vertices such that vr.rid already exists in G∗

with a tag for linking condition L[link], S adds the
previous ltglinkr to vr,

2) for any vertices v′r neighboring some vr with an
existing link tag, S sets the same tag ltglinkr as vr,

3) for any remaining vertices, S samples a new
ltglinkr ← {0, 1}∗,

– (query tokens) For each (Pi, x, value) in filter,
1) for each vertex vr ∈ V such that vr.filterlist con-

tains (Pi, x, value), S adds tkdatar to the tuple tks,
and adds ltglinkr to the tuple ltgs,



2) since ΣMM is response-revealing, S uses the re-
sponse tks and the query leakage to compute ftk←
SimMM(LMM

Q (MMfilter
i , q), tks),

3) S uses the response ltgs and the query leakage to
compute ltk← SimMM(LMM

Q (MMlink
i , q), ltgs),

4) S sets filtertk = filtertk ∪ (Pi, ftk, ltk)

– S sets G∗ = G∗ ∪ Glink,
– Finally, S sends (filtertk, aggregate) to S.

We show through the following sequence of games that
A’s view in the IdealΛZ,S(k) experiment is indistinguishable
from its view in a HybridZ,A(k) experiment.

• Game0: is an execution of a Hybrid(k) experiment.
• Game1: is the same as Game0 except that the FOPRF

functionality is simulated. The adversary A’s view does
not change as a result of this.

• Game2: is the same as Game1 except that ctK is replaced
with PKE.Enc(pkkey, 0

k). The security of PKE guarantees
that we can replace these without affecting A’s view.

• Game3: is the same as Game2 except that the dictionaries
DXr are replaced with dictionaries containing SHE en-
cryptions of 0. The security of SHE guarantees that this
will not affect the adversary’s view.

• Game4: is the same as Game3 except that each EDXdata

is replaced with a simulated encrypted dictionary:
– In Setup, EDXdata ← SimDX(LDX

S (DXdata)), and
– In Query, tkdata is replaced with

tkdata ← SimDX(LDX
Q (DXdata, q),DXr)

The ΛDX security of ΣDX guarantees that the simulated
dictionary EDXdata and tokens are computationally indis-
tinguishable from a real dictionary and tokens.

• Game5: is the same as Game4 except that each EMMlink is
replaced with a simulated encrypted multi-map as follows:
– In Setup, EMMlink ← SimMM(LMM

S (MMlink)), and
– In Query, ltk is replaced with

ltk ← SimMM(LMM
Q (MMlink, q), ltgs), where ltgs con-

tains random linking tags that are simulated using the
linking graph as described in the (link tags) step of the
proof. Since G∗ describes all the previous links visible
to the adversary, the simulator can sample random tags
such that the adversary’s view is unchanged.

The ΛMM security of ΣMM guarantees that the simulated
EMMlink and all simulated tokens are computationally
indistinguishable from a real encrypted multi-map.

• Game6: is the same as Game5 except that each EMMfilter

is simulated as follows:
– In Setup, EMMfilter ← SimMM(LMM

S (MMfilter)), and
– In Query, ftk is replaced with

ftk ← SimMM(LMM
Q (MMfilter, q), tks) where tks is a

tuple of tkdata tokens.
The ΛMM security of ΣMM guarantees that the simulated
EMMfilter and all simulated tokens are computationally
indistinguishable from a real encrypted multi-map.

Finally, we note that Game6 is equivalent to IdealΛZ,S(k),
and hence Synq is ΛSynq-secure for this corruption setting.
We defer the expanded proof to the full version of our paper.

Appendix C.
Extended Application: Boston Wage Equity

The Boston wage equity study [69] was an initiative
led by the Boston Women’s Workforce Council [4]. It used
data contributed by over 100 different employers to analyze
differences in wage across gender, race, and job roles in
a privacy-preserving manner using MPC. Specifically, in
their initial design, they used a variant of additive secret
sharing in which random masks were added to each data
owners’ values such that masked val = mask+value. These
masked values were then sent to the server and the random
masks were sent to an analyst. The server aggregated each
submitted masked value masked vali from data owner Pi:
masked sum = masked val0 + . . . + masked valn. The
analyst performed the same aggregation using the masks:
mask sum = mask0 + . . . + maskn. Finally, the server
sent over the masked sum to the analyst, and the analyst
subtracted mask sum from the masked sum to compute the
total sum, which they would divide by n to arrive at the
average. The privacy of individual data values was preserved
as long as the server and the analyst did not collude.

Using Synq, the analyst would make one query for each
average that needed to be computed across gender, race, and
job position. For example, to compute the average salary for
Asian female CEOs, the analyst would formulate a query
that filters each data owners’ data on these values. In this use
case, linking is skipped (link = 0) and filtering is directly
followed by the computation of the average salary. The full
query can be expressed as follows in Synq-QL:

([(P1, role,"CEO"), (P1, race,"Asian"),
(P1,gender,"F"), . . . ,
(Pn, role,"CEO"), (Pn, race,"Asian"),
(Pn,gender,"F"), 0, [(Average, salary)])

In the original MPC-based protocol, the untrusted server
receives masked values, which can effectively be viewed
as ciphertexts. The server then sums these values together.
Through receiving the masked values, the server in the
Boston wage equity study learns the size of each data
owners’ data. The server additionally learns the number of
data owners, which it also forwards to the analyst, and the
specific operation to be performed (computing an average).
If the wage equity study had used Synq instead, the server
would learn the size of the data owners’ data through its
storage of ciphertexts. It would also learn the total number
of data owners and the aggregate operation (computing
an average). Similar to the original protocol, the analyst
would learn intermediate aggregated sums. In summary,
since in this setting there is no linking, Synq does not leak
anything more than the protocol used in the Boston study.
Additionally, Synq would also support re-computation of
these averages with different filters, whereas the original
protocol would need to recompute all the masks and all the
secret shares for any further computation.



Appendix D.
Meta-Review

D.1. Summary

This paper presents Synq, an encrypted database system
tailored for analyses related to certain public policy applica-
tions. It supports multiple data sources, and presents a query
language for expressing different computations over these
data. The language admits filtering and linking of different
records, and can be used to specify aggregation functions
over the result. Synq has been specifically designed to fit
the needs of public-policy case studies, and does not require
data owners to be online during computation.

D.2. Scientific Contributions

• Creates a New Tool to Enable Future Science
• Provides a Valuable Step Forward in an Established

Field

D.3. Reasons for Acceptance

1) The paper analyses data analytics needs for certain
public policy applications, and identifies critical chal-
lenges in this space that existing work does not address.
Most notably: the need for data owners to be offline
during computation and the ability to link records using
multiple fields.

2) The paper presents a solution to the identified problem
in the form of a new cryptographic scheme that uses
existing primitives in a novel way. This scheme is
supported by a new query language for expressing
aggregate queries over datasets.

3) The paper defines the security of the Synq protocol us-
ing an ideal functionality, which expresses the leakage,
and proves that the scheme is secure with respect to
this ideal functionality.

D.4. Noteworthy Concerns

Reviewers had differing opinions on the value of the
Taxonomy in the introduction of the paper.

Appendix E.
Response to the Meta-Review

We thank the reviewers for their useful feedback, all of
which helped shape the final version of this paper.

The paper includes the topology taxonomy to capture a
broader point about historical trends in systems that enable
analytics over encrypted data. Specifically, the paper maps
each of the prior works to the topologies in Table 2 to show
that increased synchronization requirements in prior systems
lead to decreased adherence to the design considerations
in Table 1 (all of which the paper identifies as important
for real-world deployment in the public policy context).
This relationship between synchronization and usability is
perhaps intuitive, but, to our knowledge, has never been
observed formally in prior work. The paper presents the
topology taxomony to formally make this insight; it then
leverages this observation to make a compelling case for
Synq’s design considerations. More broadly, we believe the
taxonomy can serve as a useful guideline for future works
which are concerned about similar design requirements.
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